In silico fragment-based drug design with SEED

2018 ◽  
Vol 156 ◽  
pp. 907-917 ◽  
Author(s):  
Jean-Rémy Marchand ◽  
Amedeo Caflisch
Keyword(s):  
2020 ◽  
Vol 26 ◽  
Author(s):  
Smriti Sharma ◽  
Vinayak Bhatia

: The search for novel drugs that can prevent or control Alzheimer’s disease has attracted lot of attention from researchers across the globe. Phytochemicals are increasingly being used to provide scaffolds to design drugs for AD. In silico techniques, have proven to be a game-changer in this drug design and development process. In this review, the authors have focussed on current advances in the field of in silico medicine, applied to phytochemicals, to discover novel drugs to prevent or cure AD. After giving a brief context of the etiology and available drug targets for AD, authors have discussed the latest advances and techniques in computational drug design of AD from phytochemicals. Some of the prototypical studies in this area are discussed in detail. In silico phytochemical analysis is a tool of choice for researchers all across the globe and helps integrate chemical biology with drug design.


Author(s):  
Smriti Sharma ◽  
Vinayak Bhatia

: Pyrazole and its derivatives are a pharmacologically significant active scaffold that have innumerable physiological and pharmacological activities. They can be very good targets for the discovery of novel anti-bacterial, anticancer, anti-inflammatory, anti-fungal, anti-tubercular, antiviral, antioxidant, antidepressant, anti-convulsant and neuroprotective drugs. This review focuses on the importance of in silico manipulations of pyrazole and its derivatives for medicinal chemistry. The authors have discussed currently available information on the use of computational techniques like molecular docking, structure-based virtual screening (SBVS), molecular dynamics (MD) simulations, quantitative structure activity relationship (QSAR), comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) to drug design using pyrazole moieties. Pyrazole based drug design is mainly dependent on the integration of experimental and computational approaches. The authors feel that more studies need to be done to fully explore the pharmacological potential of the pyrazole moiety and in silico method can be of great help.


2018 ◽  
Vol 16 (6) ◽  
pp. 649-663 ◽  
Author(s):  
Sheikh Arslan Sehgal ◽  
Mirza A. Hammad ◽  
Rana Adnan Tahir ◽  
Hafiza Nisha Akram ◽  
Faheem Ahmad

2020 ◽  
Vol 8 ◽  
Author(s):  
Sharon Shechter ◽  
David R. Thomas ◽  
David A. Jans

The development of new drugs is costly and time-consuming, with estimates of over $US1 billion and 15 years for a product to reach the market. As understanding of the molecular basis of disease improves, various approaches have been used to target specific molecular interactions in the search for effective drugs. These include high-throughput screening (HTS) for novel drug identification and computer-aided drug design (CADD) to assess the properties of putative drugs before experimental work begins. We have applied conventional HTS and CADD approaches to the problem of identifying antiviral compounds to limit infection by Venezuelan equine encephalitis virus (VEEV). Nuclear targeting of the VEEV capsid (CP) protein through interaction with the host nuclear import machinery has been shown to be essential for viral pathogenicity, with viruses incapable of this interaction being greatly attenuated. Our previous conventional HTS and in silico structure-based drug design (SBDD) screens were successful in identifying novel inhibitors of CP interaction with the host nuclear import machinery, thus providing a unique opportunity to assess the relative value of the two screening approaches directly. This focused review compares and contrasts the two screening approaches, together with the properties of the inhibitors identified, as a case study for parallel use of the two approaches to identify antivirals. The utility of SBDD screens, especially when used in parallel with traditional HTS, in identifying agents of interest to target the host–pathogen interface is highlighted.


2018 ◽  
Author(s):  
Traci Clymer ◽  
Vanessa Vargas ◽  
Eric Corcoran ◽  
Robin Kleinberg ◽  
Jakub Kostal

Chemicals are the basis of our society and economy, yet many existing chemicals are known to have unintended adverse effects on human and environmental health. Testing all existing and new chemicals on animals is both economically and ethically unfeasible. In this paper, a new in silico framework is presented that affords redesign of existing hazardous chemicals in commerce based on specific molecular initiating events in their adverse outcomes pathways. Our approach is based on a successful methodology implemented in computational drug discovery, and promises to dramatically lower costs associated with new chemical development by synergistically addressing chemical function and safety at the design stage. <br>


Sign in / Sign up

Export Citation Format

Share Document