Targeted delivery of p-coumaric acid encapsulated mannosylated liposomes to the synovial macrophages inhibits osteoclast formation and bone resorption in the rheumatoid arthritis animal model

2018 ◽  
Vol 133 ◽  
pp. 162-175 ◽  
Author(s):  
Manoj Kumar Neog ◽  
Mahaboobkhan Rasool
2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 941.1-941
Author(s):  
X. Wang ◽  
L. Sun ◽  
J. Zhao

Background:Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by bone destruction[1]. Chemokine signaling by skeletal cells or by other cells of the bone marrow niche regulates bone formation and resorption[2]. Recent studies have found that CXCL7 enhanced the osteoclast formation in mouse bone marrow cells[3, 4]. Whether CXCL7 plays a role in human osteoclastogenesis especially in RA patients remains unclear.Objectives:To examine the functional role of CXCL7 in the induction of osteoclastogenesis in RA.Methods:The level of CXCL7 in CD14+monocyte supernatant was assessed via enzyme-linked immunosorbent assay. Osteoclastogenesis of CD14+monocyte from RA patients and healthy donors were evaluated by TRAP staining and F-actin ring immunofluorescence. Bone resorption pit was observed by scanning electron microscopy. We performed quantitative reverse transcription polymerase chain reaction (RT-PCR) to detect changes in osteoclast markers. RAW264.7 macrophages were also used to investigate specific signaling pathway by which CXCL7 stimulated during osteoclast formation.Results:CXCL7 level in CD14+monocyte supernatant from RA patients (5690 ±627.05 pg/ml) was significantly higher than that in healthy controls (2301 ±535.52 pg/ml) (n=5, P<0.001). In the presence of M-CSF and RANKL, CXCL7 promoted osteoclast formation(Figure 1A and B) and increased bone resorption area(Figure 1C) of CD14+monocyte from healthy donors in the low concentration (10ng/ml) group (n=3, p < 0.05). While in high concentration of CXCL7 (50ng/ml) group, there were no significant changes in the number of osteoclasts. Transcription level of the osteoclast markers RANK, cathepsin K, and MMP-9 was significantly increased in the CXCL7 (10 ng/mL) group after 3 days in the presence of M-CSF and sRANKL (n=3, p < 0.05). When using CD14+ monocyte from RA patients, the optimal concentration of CXCL7 was 50ng/ml, which significantly increased the number of osteoclasts (Figure 2A and B)and bone resorption area (Figure 2C) (n=3, p < 0.01). Flow cytometry analysis revealed that a higher proportion of CD14+monocytes expressed CXCR2 from healthy donors than those from RA patients (n=6, p < 0.01). Consistent with the results obtained in CD14+monocytes, the effects of exogenous CXCL7 on osteoclast formation were also observed in RAW264.7 cells (p < 0.01). The addition of CXCL7 dramatically promoted phosphorylation ERK1/2 in RAW264.7 cells, but it did not affect the phosphorylation of P65.Conclusion:CXCL7 level in CD14+monocyte supernatant was higher in RA patients than that of healthy donors. CXCL7 promoted osteoclastogenesis in CD14+monocyte both from RA patients and healthy donors. CXCL7 could be a potential therapeutic target for bone destruction in RA.References:[1] McInnes, I.B. and G. Schett, The pathogenesis of rheumatoid arthritis. N Engl J Med, 2011. 365(23): p. 2205-19.[2] Brylka, L.J. and T. Schinke, Chemokines in Physiological and Pathological Bone Remodeling. Front Immunol, 2019. 10: p. 2182.[3] Nakao, K., et al., IGF2 modulates the microenvironment for osteoclastogenesis. Biochem Biophys Res Commun, 2009. 378(3): p. 462-6.[4] Goto, Y., et al., CXCR4(+) CD45(-) Cells are Niche Forming for Osteoclastogenesis via the SDF-1, CXCL7, and CX3CL1 Signaling Pathways in Bone Marrow. Stem Cells, 2016. 34(11): p. 2733-2743.Acknowledgments :We gratefully thank the Medical Research Center of Peking University Third Hospital for providing experimental equipment and technical support.Disclosure of Interests:None declared


2020 ◽  
Vol 11 (7) ◽  
pp. 6251-6264
Author(s):  
Jing Wu ◽  
Kai-Jian Fan ◽  
Qi-Shan Wang ◽  
Bing-Xin Xu ◽  
Qing Cai ◽  
...  

Collagen-induced arthritis (CIA) is a widely used animal model for studying rheumatoid arthritis (RA), which manifests serious joint dysfunction, progressive bone erosion and articular cartilage destruction.


2017 ◽  
Vol 25 ◽  
pp. S142-S143
Author(s):  
N.A. Athanasou ◽  
A. Sabokbar ◽  
D. Mahoney ◽  
C. Swales ◽  
Y. Uchihara

2014 ◽  
Vol 21 (5) ◽  
pp. 641-649 ◽  
Author(s):  
B. Tian ◽  
A. Qin ◽  
Z.Y. Shao ◽  
T. Jiang ◽  
Z.J. Zhai ◽  
...  

2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Scott A. Scarneo ◽  
Liesl S. Eibschutz ◽  
Phillip J. Bendele ◽  
Kelly W. Yang ◽  
Juliane Totzke ◽  
...  

Abstract Objectives To examine the ability of takinib, a selective transforming growth factor beta-activated kinase 1 (TAK1) inhibitor, to reduce the severity of murine type II collagen-induced arthritis (CIA), and to affect function of synovial cells. Methods Following the induction of CIA, mice were treated daily with takinib (50 mg/kg) and clinical scores assessed. Thirty-six days post-CIA induction, histology was performed on various joints of treated and vehicle-treated animals. Inflammation, pannus, cartilage damage, bone resorption, and periosteal bone formation were quantified. Furthermore, pharmacokinetics of takinib were evaluated by LC-MS in various tissues. Rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) cells were cultured with 10 μM takinib and cytokine secretion analyzed by cytokine/chemokine proteome array. Cytotoxicity of takinib for RA-FLS was measured with 24 to 48 h cultures in the presence or absence of tumor necrosis factor (TNF). Results Here, we show takinib’s ability to reduce the clinical score in the CIA mouse model of rheumatoid arthritis (RA) (p < 0.001). TAK1 inhibition reduced inflammation (p < 0.01), cartilage damage (p < 0.01), pannus, bone resorption, and periosteal bone formation and periosteal bone width in all joints of treated mice compared to vehicle treated. Significant reduction of inflammation (p < 0.004) and cartilage damage (p < 0.004) were observed in the knees of diseased treated animals, with moderate reduction seen in the forepaws and hind paws. Furthermore, the pharmacokinetics of takinib show rapid plasma clearance (t½ = 21 min). In stimulated RA-FLS cells, takinib reduced GROα, G-CSF, and ICAM-1 pro-inflammatory cytokine signaling. Conclusion Our findings support the hypothesis that TAK1 targeted therapy represents a novel therapeutic axis to treat RA and other inflammatory diseases.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1982
Author(s):  
Wataru Ariyoshi ◽  
Shiika Hara ◽  
Ayaka Koga ◽  
Yoshie Nagai-Yoshioka ◽  
Ryota Yamasaki

Although the anti-tumor and anti-infective properties of β-glucans have been well-discussed, their role in bone metabolism has not been reviewed so far. This review discusses the biological effects of β-glucans on bone metabolisms, especially on bone-resorbing osteoclasts, which are differentiated from hematopoietic precursors. Multiple immunoreceptors that can recognize β-glucans were reported to be expressed in osteoclast precursors. Coordinated co-stimulatory signals mediated by these immunoreceptors are important for the regulation of osteoclastogenesis and bone remodeling. Curdlan from the bacterium Alcaligenes faecalis negatively regulates osteoclast differentiation in vitro by affecting both the osteoclast precursors and osteoclast-supporting cells. We also showed that laminarin, lichenan, and glucan from baker’s yeast, as well as β-1,3-glucan from Euglema gracilisas, inhibit the osteoclast formation in bone marrow cells. Consistent with these findings, systemic and local administration of β-glucan derived from Aureobasidium pullulans and Saccharomyces cerevisiae suppressed bone resorption in vivo. However, zymosan derived from S. cerevisiae stimulated the bone resorption activity and is widely used to induce arthritis in animal models. Additional research concerning the relationship between the molecular structure of β-glucan and its effect on osteoclastic bone resorption will be beneficial for the development of novel treatment strategies for bone-related diseases.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 321
Author(s):  
Shenghui Zhong ◽  
Peng Liu ◽  
Jinsong Ding ◽  
Wenhu Zhou

Methotrexate (MTX) is an anchor drug for the treatment of rheumatoid arthritis (RA); however, long-term and high-dose usage of MTX for patients can cause many side effects and toxic reactions. To address these difficulties, selectively delivering MTX to the inflammatory site of a joint is promising in the treatment of RA. In this study, we prepared MTX-PEI@HA nanoparticles (NPs), composed of hyaluronic acid (HA) as the hydrophilic negative electrical shell, and MTX-linked branched polyethyleneimine (MTX-PEI) NPs as the core. MTX-PEI@HA NPs were prepared in the water phase by a one-pot method. The polymeric NPs were selectively internalized via CD44 receptor-mediated endocytosis in the activated macrophages. In the in vivo mice mode study, treatment with MTX-PEI@HA NPs mitigated inflammatory arthritis with notable safety at a high dose of MTX. We highlight the distinct advantages of aqueous-synthesized NPs coated with HA for arthritis-selective targeted delivery, thus verifying MTX-PEI@HA NPs as a promising MTX-based nanoplatform for treatment of RA.


Bone Reports ◽  
2021 ◽  
Vol 14 ◽  
pp. 100865
Author(s):  
B.K. Davies ◽  
Andrew Hibbert ◽  
Mark Hopkinson ◽  
Gill Holdsworth ◽  
Isabel Orriss

Sign in / Sign up

Export Citation Format

Share Document