Dose-optimized computed tomography of the cervical spine in patients with shoulder pull-down: Is image quality comparable with a standard dose protocol in an emergency setting?

2019 ◽  
Vol 120 ◽  
pp. 108655 ◽  
Author(s):  
Magdalini Tozakidou ◽  
Schu-Ren Yang ◽  
Balazs K. Kovacs ◽  
Zsolt Szucs-Farkas ◽  
Ueli Studler ◽  
...  
2020 ◽  
Vol 9 (1) ◽  
pp. 27-31
Author(s):  
Mahesh Gautam ◽  
Aziz Ullah ◽  
Manish Raj Pathak

Background: Standard dose computed tomography is standard imaging modality in diagnosis of urolithiasis. The introduction of low dose techniques results in decrease radiation dose without significant change in image quality. However, the image quality of low dose computed tomography is affected by skin fold thickness and subcutaneous abdominal adipose tissue. The aim of this study to evaluate stone location, size, and density using low dose computed tomography compared with standard dose computed tomography in obese population. Material and Methods: This non-randomized non-inferiority trial includes 120 patient having BMI≥25kg/m2 with acute ureteric colic. The low dose and standard dose computed tomography were performed accordingly. Effective radiation doses were calculated from dose-length product obtained from scan report using conversion factor of 0.015. The images were reconstructed using iterative reconstruction algorithm. Effective dose, number and size of stone, Hounsfield Unit value of stone and image quality was assessed. Results: Stones were located in 69 (57.5%) in right and 51 (42.5%) in left ureter. There was no statistical difference in mean diameter, number and density of stones in low dose as compared with standard dose. The radiation dose was significantly lower with low dose. (3.68 mSv) The delineation of the ureter, outline of the stones and image quality in low dose was overall sufficient for diagnosis. No images of low dose scan were subjectively rated as non-diagnostics. Conclusion: Low dose computed tomography with iterative reconstruction technique is as effective as standard dose in diagnosis of ureteric stones in obese patients with lower effective radiation dose.


2021 ◽  
pp. 028418512198995
Author(s):  
Erdal Tekin ◽  
Kutsi Tuncer ◽  
Ibrahim Ozlu ◽  
Recep Sade ◽  
Rustem Berhan Pirimoglu ◽  
...  

Background The use and frequency of computed tomography (CT) are increasing day by day in emergency departments (ED). This increases the amount of radiation exposed. Purpose To evaluate the image quality obtained by ultra-low-dose CT (ULDCT) in patients with suspected wrist fractures in the ED and to investigate whether it is an alternative to standard-dose CT (SDCT). Material and Methods This is a study prospectively examining 336 patients who consulted the ED for wrist trauma. After exclusion criteria were applied, the patients were divided into the study and control groups. Then, SDCT (120 kVp and 100 mAs) and ULDCT (80 kVp and 5 mAs) wrist protocols were applied simultaneously. The images obtained were evaluated for image quality and fracture independently by a radiologist and an emergency medical specialist using a 5-point scale. Results The effective radiation dose calculated for the control group scans was 41.1 ± 2.1 µSv, whereas the effective radiation dose calculated for the study group scans was 0.5 ± 0.0 µSv. The effective radiation dose of the study group was significantly lower than that of the control group ( P < 0.01). The CT images in the study group showed no significant differences in the mean image quality score between observer 1 and observer 2 (3.4 and 4.3, respectively; P = 0.58). Both observers could detect all fractures using the ULDCT images. Conclusion ULDCT provides high-quality images in wrist traumas while reducing the radiation dose by approximately 98% compared to SDCT without any changes in diagnostic accuracy.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246532
Author(s):  
Nieun Seo ◽  
Mi-Suk Park ◽  
Jun Yong Choi ◽  
Joon-Sup Yeom ◽  
Myeong-Jin Kim ◽  
...  

Background Radiation dose reduction is a major concern in patients who undergo computed tomography (CT) to follow liver and renal abscess. Objectives The purpose of this study is to investigate the feasibility of ultralow-dose CT with iterative reconstruction (IR) to follow patients with liver and renal abscess. Methods This prospective study included 18 patients who underwent ultralow-dose CT with IR to follow abscesses (liver abscesses in 10 patients and renal abscesses in 8 patients; ULD group). The control group consisted of 14 patients who underwent follow-up standard-dose CT for liver abscesses during the same period. The objective image noise was evaluated by measuring standard deviation (SD) in the liver and subcutaneous fat to select a specific IR for qualitative analysis. Two radiologists independently evaluated subjective image quality, noise, and diagnostic confidence to evaluate abscess using a five-point Likert scale. Qualitative parameters were compared between the ULD and control groups with the Mann-Whitney U test. Results The mean CT dose index volume and dose length product of standard-dose CT were 8.7 ± 1.8 mGy and 555.8 ± 142.8 mGy·cm, respectively. Mean dose reduction of ultralow-dose CT was 71.8% compared to standard-dose CT. After measuring SDs, iDose level 5, which showed similar SD to standard-dose CT in both the subcutaneous fat and liver (P = 0.076, and P = 0.124), was selected for qualitative analysis. Ultralow-dose CT showed slightly worse subjective image quality (P < 0.001 for reader 1, and P = 0.005 for reader 2) and noise (P = 0.004 for reader 1, and P = 0.001 for reader 2) than standard-dose CT. However, the diagnostic confidence of ultralow-dose CT for evaluating abscess was comparably excellent to standard-dose CT (P = 0.808 for reader 1, and P = 0.301 for reader 2). Conclusions Ultralow-dose CT with IR can be used in the follow-up of liver and renal abscess with comparable diagnostic confidence.


2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
P Poskaite ◽  
M Pamminger ◽  
C Kranewitter ◽  
C Kremser ◽  
M Reindl ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Background The natural history of thoracic aortic aneurysm (TAA) is one of progressive expansion. Asymptomatic patients who do not meet criteria for repair require conservative management including ongoing aneurysm surveillance, mostly carried out by contrast-enhanced computed tomography angiography (CTA). Purpose To prospectively compare image quality and reliability of a prototype non-contrast, self-navigated 3D whole-heart magnetic resonance angiography (MRA) with contrast-enhanced computed tomography angiography (CTA) for sizing of thoracic aortic aneurysm (TAA). Methods Self-navigated 3D whole-heart 1.5 T MRA was performed in 20 patients (aged 67 ± 8.6 years, 75% male) for sizing of TAA; a subgroup of 18 (90%) patients underwent additional contrast-enhanced CTA on the same day. Subjective image quality was scored according to a 4-point Likert scale and ratings between observers were compared by Cohen’s Kappa statistics. Continuous MRA and CTA measurements were analyzed with regression and Bland-Altman analysis. Results Overall subjective image quality as rated by two observers was 1 [interquartile range (IQR) 1-2] for self-navigated MRA and 1.5 [IQR 1-2] for CTA (p = 0.717). For MRA a perfect inter-observer agreement was found for presence of artefacts and subjective image sharpness (κ=1). Subjective signal inhomogeneity correlated highly with objectively quantified inhomogeneity of the blood pool signal (r = 0.78-0.824, all p &lt;0.0001). Maximum diameters of TAA as measured by self-navigated MRA and CTA showed excellent correlation (r = 0.997, p &lt; 0.0001) without significant inter-method bias (bias -0.0278, lower and upper limit of agreement -0.74 and 0.68, p = 0.749). Inter- and intraobserver correlation of aortic aneurysm as measured by MRA was excellent (r = 0.963 and 0.967, respectively) without significant bias (all p ≤ 0.05). Conclusion Self-navigated 3D whole-heart MRA enables reliable contrast- and radiation free aortic dilation surveillance without significant difference to standardized CTA while providing predictable acquisition time and by offering excellent image quality. Abstract Figure.


Sign in / Sign up

Export Citation Format

Share Document