Diagnosing uterine cervical cancer on a single T2-weighted image: Comparison between deep learning versus radiologists

2021 ◽  
Vol 135 ◽  
pp. 109471
Author(s):  
Aiko Urushibara ◽  
Tsukasa Saida ◽  
Kensaku Mori ◽  
Toshitaka Ishiguro ◽  
Masafumi Sakai ◽  
...  
Genes ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 931 ◽  
Author(s):  
Saurav Mallik ◽  
Soumita Seth ◽  
Tapas Bhadra ◽  
Zhongming Zhao

DNA methylation change has been useful for cancer biomarker discovery, classification, and potential treatment development. So far, existing methods use either differentially methylated CpG sites or combined CpG sites, namely differentially methylated regions, that can be mapped to genes. However, such methylation signal mapping has limitations. To address these limitations, in this study, we introduced a combinatorial framework using linear regression, differential expression, deep learning method for accurate biological interpretation of DNA methylation through integrating DNA methylation data and corresponding TCGA gene expression data. We demonstrated it for uterine cervical cancer. First, we pre-filtered outliers from the data set and then determined the predicted gene expression value from the pre-filtered methylation data through linear regression. We identified differentially expressed genes (DEGs) by Empirical Bayes test using Limma. Then we applied a deep learning method, “nnet” to classify the cervical cancer label of those DEGs to determine all classification metrics including accuracy and area under curve (AUC) through 10-fold cross validation. We applied our approach to uterine cervical cancer DNA methylation dataset (NCBI accession ID: GSE30760, 27,578 features covering 63 tumor and 152 matched normal samples). After linear regression and differential expression analysis, we obtained 6287 DEGs with false discovery rate (FDR) <0.001. After performing deep learning analysis, we obtained average classification accuracy 90.69% (±1.97%) of the uterine cervical cancerous labels. This performance is better than that of other peer methods. We performed in-degree and out-degree hub gene network analysis using Cytoscape. We reported five top in-degree genes (PAIP2, GRWD1, VPS4B, CRADD and LLPH) and five top out-degree genes (MRPL35, FAM177A1, STAT4, ASPSCR1 and FABP7). After that, we performed KEGG pathway and Gene Ontology enrichment analysis of DEGs using tool WebGestalt(WEB-based Gene SeT AnaLysis Toolkit). In summary, our proposed framework that integrated linear regression, differential expression, deep learning provides a robust approach to better interpret DNA methylation analysis and gene expression data in disease study.


Author(s):  
Judit A. Adam ◽  
Hester Arkies ◽  
Karel Hinnen ◽  
Lukas J. Stalpers ◽  
Jan H. van Waesberghe ◽  
...  

Author(s):  
Shinya Hiraoka ◽  
Aya Nakajima ◽  
Noriko Kishi ◽  
Keiichi Takehana ◽  
Hideki Hanazawa ◽  
...  

2016 ◽  
Vol 57 (6) ◽  
pp. 677-683 ◽  
Author(s):  
Yoshifumi Oku ◽  
Hidetaka Arimura ◽  
Tran Thi Thao Nguyen ◽  
Yoshiyuki Hiraki ◽  
Masahiko Toyota ◽  
...  

Abstract This study investigates whether in-room computed tomography (CT)-based adaptive treatment planning (ATP) is robust against interfractional location variations, namely, interfractional organ motions and/or applicator displacements, in 3D intracavitary brachytherapy (ICBT) for uterine cervical cancer. In ATP, the radiation treatment plans, which have been designed based on planning CT images (and/or MR images) acquired just before the treatments, are adaptively applied for each fraction, taking into account the interfractional location variations. 2D and 3D plans with ATP for 14 patients were simulated for 56 fractions at a prescribed dose of 600 cGy per fraction. The standard deviations (SDs) of location displacements (interfractional location variations) of the target and organs at risk (OARs) with 3D ATP were significantly smaller than those with 2D ATP (P &lt; 0.05). The homogeneity index (HI), conformity index (CI) and tumor control probability (TCP) in 3D ATP were significantly higher for high-risk clinical target volumes than those in 2D ATP. The SDs of the HI, CI, TCP, bladder and rectum D2cc, and the bladder and rectum normal tissue complication probability (NTCP) in 3D ATP were significantly smaller than those in 2D ATP. The results of this study suggest that the interfractional location variations give smaller impacts on the planning evaluation indices in 3D ATP than in 2D ATP. Therefore, the 3D plans with ATP are expected to be robust against interfractional location variations in each treatment fraction.


Sign in / Sign up

Export Citation Format

Share Document