apoptosis inhibitor
Recently Published Documents


TOTAL DOCUMENTS

211
(FIVE YEARS 46)

H-INDEX

34
(FIVE YEARS 4)

Author(s):  
Wei Huan ◽  
Liu Yandong ◽  
Wang Chao ◽  
Zou Sili ◽  
Bai Jun ◽  
...  

Objective: programmed cell removal in atherosclerotic plaques plays a crucial role in retarding lesion progression. Macrophage apoptosis has a critical role in PrCR, especially in early-stage lesions. YKL-40 has been shown to be elevated as lesions develop and is closely related to macrophages. This study aimed to determine the effect of YKL-40 on regulating macrophage apoptosis and early-stage atherosclerosis progression.Research design and Methods: The correlations among the expression level of YKL-40, the area of early-stage plaque, and the macrophage apoptosis rate in plaques have been shown in human carotid atherosclerotic plaques through pathological and molecular biological detection. These results were successively confirmed in vivo (Ldlr−/- mice treated by YKL-40 recombinant protein/neutralizing antibody) and in vitro (macrophages that Ykl40 up-/down-expressed) experiments. The downstream targets were predicted by iTRAQ analysis.Results: In early-stage human carotid plaques and murine plaques, the YKL-40 expression level had a significant positive correlation with the area of the lesion and a significant negative correlation with the macrophage apoptosis rate. In vivo, the plaque area of aortic roots was significantly larger in the recomb-YKL-40 group than that in IgG group (p = 0.0247) and was significantly smaller in the anti-YKL-40 group than in the IgG group (p = 0.0067); the macrophage apoptosis rate of the plaque in aortic roots was significantly lower in the recomb-YKL-40 group than that in IgG group (p = 0.0018) and was higher in anti-YKL-40 group than that in VC group. In vitro, the activation level of caspase-9 was significantly lower in RAW264.7 with Ykl40 overexpressed than that in controls (p = 0.0054), while the expression level of Aven was significantly higher than that in controls (p = 0.0031). The apoptosis rate of RAW264.7 treated by recomb-YKL40 was significantly higher in the Aven down-regulated group than that in the control group (p < 0.001). The apoptosis inhibitor Aven was confirmed as the target molecule of YKL-40. Mechanistically, YKL-40 could inhibit macrophage apoptosis by upregulating Aven to suppress the activation of caspase-9.Conclusion: YKL-40 inhibits macrophage apoptosis by upregulating the apoptosis inhibitor Aven to suppress the activation of caspase-9, which may impede normal PrCR and promote substantial accumulation in early-stage plaques, thereby leading to the progression of atherosclerosis.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260449
Author(s):  
Ching-Ting Wang ◽  
Tetsushi Tezuka ◽  
Naoki Takeda ◽  
Kimi Araki ◽  
Satoko Arai ◽  
...  

The influence of excess salt intake on acute kidney injury (AKI) has not been examined precisely except for some clinical data, unlike in chronic kidney disease. Here, we addressed the influence of high salt (HS) on AKI and its underlying mechanisms in terms of the activity of circulating apoptosis inhibitor of macrophage (AIM, also called CD5L) protein, a facilitator of AKI repair. HS loading in mice subjected to ischemia/reperfusion (IR) resulted in high mortality with advanced renal tubular obstruction and marked exacerbation in biomarkers of proximal renal tubular damage. This AKI exacerbation appeared to be caused mainly by the reduced AIM dissociation from IgM pentamer in serum, as IgM-free AIM is indispensable for the removal of intratubular debris to facilitate AKI repair. Injection of recombinant AIM (rAIM) ameliorated the AKI induced by IR/HS, dramatically improving the tubular damage and mouse survival. The repair of lethal AKI by AIM was dependent on AIM/ kidney injury molecule-1 (KIM-1) axis, as rAIM injection was not effective in KIM-1 deficient mice. Our results demonstrate that the inhibition of AIM dissociation from IgM is an important reason for the exacerbation of AKI by HS, that AIM is a strong therapeutic tool for severe AKI.


Author(s):  
Shuai Bian ◽  
Meichen Liu ◽  
Song Yang ◽  
Shuyan Lu ◽  
Siming Wang ◽  
...  

Abstract 20(S)-Ginsenoside Rh2 (GRh2) has various biological activities including anticancer effects. However, no reports have investigated the connection between autophagy and apoptosis in HeLa cells treated with 20(S)-GRh2. In this study, We found that 20(S)-GRh2 suppressed proliferation and induced apoptosis in HeLa cells by activating the intrinsic apoptotic pathway and causing mitochondrial dysfunction. 20(S)-GRh2 enhanced cell autophagy through promoted the phosphorylation of AMPK, depressed the phosphorylation of AKT and suppressed mTOR activity. Furthermore, treatment with the autophagy inhibitor 3-MA enhanced 20(S)-GRh2-induced apoptosis, while the autophagy inducer rapamycin promoted cell survival. Moreover, the apoptosis inhibitor Z-VAD-FMK significantly restrained the apoptosis and autophagy induced by 20(S)-GRh2 in HeLa cells. We found that 20(S)-ginsenoside Rh2-induced protective autophagy promotes apoptosis of cervical cancer cells by inhibiting AMPK/mTOR pathway.


2021 ◽  
Author(s):  
Shahan Mamoor

In these brief notes we document work using published microarray data (1, 2) to pioneer integrative transcriptome analysis comparing vulvar carcinoma to its tissue of origin, the vulva. We report the differential expression of apoptosis inhibitor 5, encoded by API5, in cancer of the vulva. API5 may be of pertinence to understanding transformation and disease progression in vulvar cancer (3).


Nano LIFE ◽  
2021 ◽  
Author(s):  
Ziqi Wang ◽  
Chuanrong Chen ◽  
Penglin Zou ◽  
Yuchen Tao ◽  
Feng Gao ◽  
...  

Castration-resistant prostate cancer (CRPC) and its metastases are the main reasons for the high mortality of prostate cancer. Currently, paclitaxel (PTX)-based chemotherapeutics are used as first-line drugs to treat CRPC, but this treatment does not show good effects and is accompanied by serious side effects, which may be because intravenously injected chemotherapeutic drugs have difficulties gathering at the tumor site. Therefore, a safe and effective drug delivery carrier is urgently needed to enhance the therapeutic effects of chemotherapeutic drugs against CRPC. Methoxy polyethylene glycol-polylacticco-glycolic acid-polylysine (mPEG-PLGA-PLL) nanoparticles (NPs) have shown high drug encapsulation efficiency and good therapeutic effects against ovarian cancer and pancreatic cancer, but there are few studies on their treatment against CRPC. To expand the applications of mPEG-PLGA-PLL NPs, in this study, mPEG-PLGA-PLL NPs loaded with PTX (PTX-NPs) were synthesized. The synthesized PTX-NPs had a uniform particle size and no obvious aggregation. PTX-NPs can be uptaked by PC-3 cells, which significantly promotes the inhibition of proliferation and apoptosis effects of PTX on cells and reduces the expression levels of CDK6, Cyclin D1 and Bcl-2 (cyclins and an apoptosis inhibitor), and these effects can be further enhanced by ultrasound-induced microbubble cavitation (UIMC). Our research provides a new nanocarrier for the treatment of CRPC, laying the foundation for further research in the future.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1225
Author(s):  
Oluwaseun Adebayo Bamodu ◽  
Yuan-Hung Wang ◽  
Chi-Tai Yeh ◽  
Chen-Hsun Ho ◽  
Yi-Te Chiang ◽  
...  

Background: Despite its widespread use, the use of prostate-specific antigen (PSA) alone as a screening biomarker for prostate cancer (PCa) leads often to unwarranted prostate biopsy, over-diagnosis, and consequently, over-treatment, because of its limited specificity. There are reports that the apoptosis inhibitor of macrophage (AIM), secreted mainly by macrophages and epithelial cells, is upregulated during inflammation and facilitates immune recognition of cancerous cells by blocking human regulator of complement activation. Objective: These controversies around the PSA utility necessitate a reexamination of its use as a screening tool. More so, despite the suggested implication of AIM in anticancer immunosurveillance, there is a dearth of information on its role in therapy response, disease progression, and clinical outcomes of patients with PCa. These inform the present study to probe the nature and role of AIM/PSA signaling in anticancer immunity and prognosis in PCa. Methods: A combination of bioinformatics-aided statistical analyses, gene function annotation, and immune infiltrate analyses, coupled with tissue staining, and function assays, namely migration, invasion, and clonogenicity assays, we employed. Results: We demonstrated that AIM and PSA expression levels are inversely correlated in PCa clinical samples and cell lines, with AIMlowPSAhigh defining PCa, compared to AIMhighPSAlow in normal samples. Concomitant aberrant PSA and significantly suppressed AIM expression levels positively correlated with high-grade disease and characterized by advanced stage prostate cancer, regardless of mutation status. We found that a high PSA/AIM ratio is associated with disease recurrence in patients with prostate cancer but is equivocal for overall survival. In addition, PSA-associated AIM suppression is implicated in the enhanced ‘metastability’ of PCa and a high AIM/PSA ratio is associated with strong castration-induced regression. CRISPR-mediated AIM knockout was associated with higher PSA expression while ectopic expression of AIM significantly attenuated the migration and invasive capability of PC3 and DU145 cells. Interestingly, compared to normal samples, we observed that AIM, biomarkers of T-cell activation and M1 phenotype markers are co-suppressed in PCa samples. Conclusion: Herein, we demonstrate that AIM/CD5L binds to PSA and that a high PSA/AIM ratio defines advanced stage PCa (regardless of mutation status), is implicated in enhanced metastability, and associated with disease recurrence, while a high AIM/PSA ratio is associated with strong castration-induced regression. More so, the ectopic expression of AIM significantly enhances the anticancer effect of Pembrolizumab and elicits an increased CD8+ T-cell count in AIMhiPSAloPDL1+ PCa cases that are respondent to Pembrolizumab treatment.


mBio ◽  
2021 ◽  
Author(s):  
Tingjuan Deng ◽  
Boli Hu ◽  
Xingbo Wang ◽  
Yan Yan ◽  
Jianwei Zhou ◽  
...  

Apoptosis inhibitor 5 (API5) is a nuclear protein initially identified for its antiapoptotic function. However, so far, posttranslational modification of API5 is unclear.


2021 ◽  
Author(s):  
Virender Kumar Sharma ◽  
Sehbanul Islam ◽  
Janhavi Borkar ◽  
Sudiksha Mishra ◽  
Debiprasad Panda ◽  
...  

Apoptosis inhibitor 5 (Api5) is an inhibitor of apoptosis, which is found to be upregulated in several cancers and promotes invasion as well as metastasis. Over-expression of Api5 is positively co-related with poor survival of cancers and inhibition of DNA damage induced apoptosis in cancerous cells. Acetylation at lysine 251 (K251) on Api5 facilitates the stability of the protein and thus functionally provides resistance to cancer cells against chemotherapeutic or anti-cancerous agents. However, the regulation of Api5 upon DNA damage is not yet known. In this study, we demonstrate that Api5 undergoes degradation following DNA damage via the ubiquitin-proteasome system. Upon DNA damage, ATR was observed to phosphorylate Api5 at serine 138 which led to the cytoplasmic localisation of Api5. The E3-ubiquitin ligase, SCF-FBXW2 ubiquitinates Api5 leading to its proteasomal degradation.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1554
Author(s):  
Guang-Zhou Zhou ◽  
Jun Li ◽  
Yan-He Sun ◽  
Qin Zhang ◽  
Lu Zhang ◽  
...  

Autophagy and apoptosis are two key cell fate determination pathways, which play vital roles in the interaction between viruses and host cells. Previous research had confirmed that one strain of fish rhabdoviruses, Siniperca chuatsi rhabdovirus (SCRV), could induce apoptosis and autophagy after infection. In the current study, we continued to analyze the interaction of autophagy and apoptosis in SCRV-infected EPC cell lines after treatment with different autophagy or apoptosis inhibitors. We found that SCRV infection could activate the mitochondrial apoptotic pathway by the detection of the activities of the caspase-3 and caspase-9 and by flow cytometry analysis in JC-1-stained cells, respectively. Furthermore, no significant autophagy-related factors were disturbed in SCRV-infected cell after apoptosis inhibitor Z-VAD-FMK treatment, while autophagy inducer rapamycin could obviously delay the occurrence of CPE and cell death. Meanwhile, rapamycin was able to reduce the proportion of apoptotic cells. Besides that, rapamycin could disturb the expression of p62 and LC3B-II, and the transcription level of SCRV nucleoprotein mRNA. The progeny virus titers did not show a big difference between the rapamycin treatment or without it. Collectively, our data preliminarily confirmed that SCRV-activated autophagy could delay apoptosis in EPC cells and may not affect virus production. Further study may need to focus on the crosstalk regulation and its roles on the SCRV infection.


Sign in / Sign up

Export Citation Format

Share Document