Altered in vivo brain GABA and Glutamate levels are associated with multiple sclerosis central fatigue

2021 ◽  
pp. 109610
Author(s):  
Jameen Arm ◽  
Georg Oeltzschner ◽  
Oun Al-iedani ◽  
Rod Lea ◽  
Jeannette Lechner-Scott ◽  
...  
2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Nicolo’ Bruschi ◽  
Giacomo Boffa ◽  
Matilde Inglese

Abstract Magnetic resonance imaging (MRI) is essential for the early diagnosis of multiple sclerosis (MS), for investigating the disease pathophysiology, and for discriminating MS from other neurological diseases. Ultra-high-field strength (7-T) MRI provides a new tool for studying MS and other demyelinating diseases both in research and in clinical settings. We present an overview of 7-T MRI application in MS focusing on increased sensitivity and specificity for lesion detection and characterisation in the brain and spinal cord, central vein sign identification, and leptomeningeal enhancement detection. We also discuss the role of 7-T MRI in improving our understanding of MS pathophysiology with the aid of metabolic imaging. In addition, we present 7-T MRI applications in other demyelinating diseases. 7-T MRI allows better detection of the anatomical, pathological, and functional features of MS, thus improving our understanding of MS pathology in vivo. 7-T MRI also represents a potential tool for earlier and more accurate diagnosis.


2021 ◽  
pp. 135245852110017
Author(s):  
Lisa Eunyoung Lee ◽  
Irene M Vavasour ◽  
Adam Dvorak ◽  
Hanwen Liu ◽  
Shawna Abel ◽  
...  

Background: Myelin water imaging (MWI) was recently optimized to provide quantitative in vivo measurement of spinal cord myelin, which is critically involved in multiple sclerosis (MS) disability. Objective: To assess cervical cord myelin measurements in relapsing-remitting multiple sclerosis (RRMS) and progressive multiple sclerosis (ProgMS) participants and evaluate the correlation between myelin measures and clinical disability. Methods: We used MWI data from 35 RRMS, 30 ProgMS, and 28 healthy control (HC) participants collected at cord level C2/C3 on a 3 T magnetic resonance imaging (MRI) scanner. Myelin heterogeneity index (MHI), a measurement of myelin variability, was calculated for whole cervical cord, global white matter, dorsal column, lateral and ventral funiculi. Correlations were assessed between MHI and Expanded Disability Status Scale (EDSS), 9-Hole Peg Test (9HPT), timed 25-foot walk, and disease duration. Results: In various regions of the cervical cord, ProgMS MHI was higher compared to HC (between 9.5% and 31%, p ⩽ 0.04) and RRMS (between 13% and 26%, p ⩽ 0.02), and ProgMS MHI was associated with EDSS ( r = 0.42–0.52) and 9HPT ( r = 0.45–0.52). Conclusion: Myelin abnormalities within clinically eloquent areas are related to clinical disability. MWI metrics have a potential role for monitoring subclinical disease progression and adjudicating treatment efficacy for new therapies targeting ProgMS.


2021 ◽  
Vol 141 (4) ◽  
pp. 585-604 ◽  
Author(s):  
Carmen Picon ◽  
Anusha Jayaraman ◽  
Rachel James ◽  
Catriona Beck ◽  
Patricia Gallego ◽  
...  

AbstractSustained exposure to pro-inflammatory cytokines in the leptomeninges is thought to play a major role in the pathogenetic mechanisms leading to cortical pathology in multiple sclerosis (MS). Although the molecular mechanisms underlying neurodegeneration in the grey matter remain unclear, several lines of evidence suggest a prominent role for tumour necrosis factor (TNF). Using cortical grey matter tissue blocks from post-mortem brains from 28 secondary progressive MS subjects and ten non-neurological controls, we describe an increase in expression of multiple steps in the TNF/TNF receptor 1 signaling pathway leading to necroptosis, including the key proteins TNFR1, FADD, RIPK1, RIPK3 and MLKL. Activation of this pathway was indicated by the phosphorylation of RIPK3 and MLKL and the formation of protein oligomers characteristic of necrosomes. In contrast, caspase-8 dependent apoptotic signaling was decreased. Upregulation of necroptotic signaling occurred predominantly in macroneurons in cortical layers II–III, with little expression in other cell types. The presence of activated necroptotic proteins in neurons was increased in MS cases with prominent meningeal inflammation, with a 30-fold increase in phosphoMLKL+ neurons in layers I–III. The density of phosphoMLKL+ neurons correlated inversely with age at death, age at progression and disease duration. In vivo induction of chronically elevated TNF and INFγ levels in the CSF in a rat model via lentiviral transduction in the meninges, triggered inflammation and neurodegeneration in the underlying cortical grey matter that was associated with increased neuronal expression of TNFR1 and activated necroptotic signaling proteins. Exposure of cultured primary rat cortical neurons to TNF induced necroptosis when apoptosis was inhibited. Our data suggest that neurons in the MS cortex are dying via TNF/TNFR1 stimulated necroptosis rather than apoptosis, possibly initiated in part by chronic meningeal inflammation. Neuronal necroptosis represents a pathogenetic mechanism that is amenable to therapeutic intervention at several points in the signaling pathway.


2018 ◽  
Vol 15 (1) ◽  
Author(s):  
Marloes H. J. Hagens ◽  
Sandeep V. Golla ◽  
Martijn T. Wijburg ◽  
Maqsood Yaqub ◽  
Dennis Heijtel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document