Impact of total water potential and varying contribution of matric and osmotic potential on carbon mineralization in saline soils

2013 ◽  
Vol 56 ◽  
pp. 95-100 ◽  
Author(s):  
Raj Setia ◽  
Petra Marschner
2020 ◽  
Author(s):  
Adil Salman ◽  
Deep Joshi ◽  
Mahyar Naseri ◽  
Wolfgang Durner

<p>The measurement of the water potential is important to characterize solute transport in soil and water uptake by plants. Many researchers have characterized the matric potential and its impact on evaporation from porous media. However, only few studies have been carried out to characterize the effect of the osmotic potential. In this study, we investigated the simultaneous influences of the osmotic and matric potentials on the evaporation from soil. Our hypothesis was that both potential components affect the two stages of evaporation and that the osmotic potential in direct vicinity of the soil surface is a controlling variable. To meet our objective, we performed evaporation experiments on columns filled with pure quartz sand and natural soil materials with different textures, under climate-controlled laboratory conditions. The soils were initially saturated with different concentrations of saline solutions and evaporation from each column was measured daily. Our results show that the osmotic potential reduced the amount of evaporated water from the investigated porous media. The amount of reduction due to the osmotic potential is compared with model calculations that consider the total water potential at the soil surface.</p>


1984 ◽  
Vol 102 (3) ◽  
pp. 687-693 ◽  
Author(s):  
Alejandra Paez ◽  
H. Hellmers ◽  
B. R. Strain

SummaryIf atmospheric carbon dioxide concentration continues to increase, plant growth and crop yield could be affected. New Yorker and Better Boy cultivars of tomato (Lycopersicon esculentum) were used to investigate possible intraspecific variation in the response of crop species to increased CO2. Because precipitation and temperature are predicted to change with the increasing atmospheric CO2 concentration, the response of the two cultivars to the interaction between CO2 and water stress was also examined. Seeds of the two cultivars were germinated and grown under controlled environmental conditions, in either 350 or 675 μ1 CO2/1.The plant water status of the two cultivars was inherently different but was little affected by the CO2 concentration when the plants were well watered. When water was withheld for 5 days the total leaf water potential and osmotic potential decreased in both CO2 treatments but less rapidly in high CO2 than in low. Under low CO2 total leaf water potential decreased to a lower value than osmotic potential. The differences were due, at least in part, to the reduced stomatal conductance and transpiration rate under high CO2.Increased CO2 ameliorated the detrimental effects of drought stress on plant growth. The results indicate that increased CO2 could differentially affect the relative drought resistance of species cultivars.


Soil Research ◽  
1993 ◽  
Vol 31 (1) ◽  
pp. 1
Author(s):  
IM Wood ◽  
IK Dart ◽  
HB So

This study examined two polyethylene glycol (PEG) polymers (PEG 6000 and PEG 10000) and compared measurements of water potential obtained with a thermocouple osmometer and thermocouple psychrometers at three temperatures (15, 25 and 35�C) and five osmdalities (50, 100, 200, 300 and 400 g/1000 g water). These were then compared with estimates of matric potential of three soils brought to equilibrium with PEG solutions of the same osmolalities. At the same osmolality and temperature the two PEG polymers gave essentially the same water potential. There was a significant effect of temperature on water potential which corresponded closely with changes in specific gravity of the PEG solution. There was a close correlation between the measurements of water potential of the PEG solutions obtained with the osmometer and the psychrometers (R = 0.99). However, the psychrometer gave increasingly lower values than the osmometer as water potential decreased. The differences in the measurements between the two methods are thought to be the result of design and calibration differences. The ease of use of the osmometer is such that it is recommended for routine use. The water potentials of the soil cores brought to equilibrium with the PEG 10 000 solution were linearly related to the water potentials of the PEG solutions estimated from both the osmometer and psychrometers (R2 = 0.84). However, there were clear deviations from a 1:l relationship. It was concluded that the results from the soil cores could not be used to determine which of the two instruments gave the more accurate measurement of water potential of PEG solutions.


1988 ◽  
Vol 39 (4) ◽  
pp. 619 ◽  
Author(s):  
JP Syvertsen ◽  
J Lloyd ◽  
PE Kriedemann

Effects of salinity and drought stress on foliar ion concentration, water relations and net gas exchange were evaluated in mature Valencia orange trees (Citrus sinensis [L.] Osbeck) on Poncirus trifoliata L. Raf. (Tri) or sweet orange (C. sinensis, Swt) rootstocks at Dareton on the Murray River in New South Wales. Trees had been irrigated with river water which averaged 4 mol m-3 chloride (Cl-) or with river water plus NaCl to produce 10, 14 or 20 mol m-3 Cl- during the previous 3 years. Chloride concentrations in leaves of trees on Tri were significantly higher than those on Swt rootstock. Foliar sodium (Na+) and Cl- concentrations increased and potassium (K+) concentrations decreased as leaves aged, especially under irrigation with 20 mol m-3 Cl-. Leaf osmotic potential was reduced as leaves matured and also by high salinity so that reductions in leaf water potential were offset. Mature leaves had a lower stomatal conductances and higher water use efficiency than young leaves. After 2 months of withholding irrigation water, leaves of low salinity trees on Tri rootstock had higher rates of net gas exchange than those on Swt rootstock, indicating rootstock-affected drought tolerance. Previous treatment with 20 mol m-3 Cl- lowered leaf area index of all trees by more than 50%, and resulted in greater reserves of soil moisture under partially defoliated trees after the drought treatment. This was reflected in more rapid evening recovery of leaf water potential and less severe reductions in net gas exchange after drought treatment in high salinity trees on Swt rootstock. High salinity plus drought stress increased Na+ content of leaves on Swt, but not on Tri rootstocks. Drought stress had no additive effect, with high salinity on osmotic potential of mature leaves. Thus, the salinity-induced reduction in leaf area appeared to be independent of the Cl- exclusion capability of the rootstock and decreased the effects of subsequent drought stress on leaf water relations and net gas exchange.


1982 ◽  
Vol 12 (3) ◽  
pp. 612-616 ◽  
Author(s):  
Alan R. Biggs ◽  
Donald D. Davis

Hybrid poplar cuttings were exposed to 0.25 ppm SO2 for 72 h/week for 14 consecutive weeks in 1979. In 1980, a second set of cuttings was exposed to 0.12 ppm SO2 for 72 h/week for 6 consecutive weeks. Foliar and bark water potential, osmotic potential, and the pressure component, as well as leaf conductance, were determined during or following exposure and compared with data from unexposed control plants. Leaf conductance was stimulated during 72-h exposures to 0.25 ppm SO2. Six 72 h/week exposures to 0.12 ppm SO2 had no effect on conductance, but induced changes in foliar water potential and osmotic potential.


1980 ◽  
Vol 7 (2) ◽  
pp. 181 ◽  
Author(s):  
MM Jones ◽  
NC Turner

Sunflower plants were grown in large volumes of soil and slowly water-stressed by withholding water. The tissue water relationships of leaves at various stages of stress and of leaves of equivalent well watered controls were studied by the pressure chamber technique. Plants were stressed either when leaf 17 was expanding or when it was fully expanded. When expanding leaves reached a moderate level of stress (predawn leaf water potential of -0.9 MPa), the osmotic potentials at full turgor and zero turgor were lower than the control values by 0.1 MPa and 0.2 MPa, respectively. When fully expanded leaves were stressed to a similar degree (predawn leaf water potential of - 1.1 MPa), the osmotic potentials at full turgor and zero turgor were lower than the control values by 0.2 MPa and 0.3 MPa, respectively. The development of more severe stress in the fully expanded leaves was not accompanied by any further osmotic adjustment. However, when the expanding leaves reached a predawn leaf water potential of -2.3 MPa, the values of leaf osmotic potential at full turgor and zero turgor were lower than the values for the well watered plants by 0.4 MPa and 0.6 MPa, respectively. In expanding leaves prestressed to a predawn leaf water potential of -2.3 MPa, the osmotic potential at full turgor was significantly less than the control values for at least 7 days after rewatering. Stress had no effect on the bulk modulus of elasticity. It is concluded that both expanding and fully expanded sunflower leaves show osmotic adjustment.


Sign in / Sign up

Export Citation Format

Share Document