Effect of long-term nutrient management practices on soil health and paddy yield of rice-rice-fallow cropping system in tropic humid climate

2021 ◽  
Vol 107 ◽  
pp. 103362
Author(s):  
Umme Aminun Naher ◽  
Md Mozammel Haque ◽  
Faruk Hossain Khan ◽  
Md Imran Ullah Sarkar ◽  
Tahmid Hossain Ansari ◽  
...  
2014 ◽  
Vol 152 (4) ◽  
pp. 575-601 ◽  
Author(s):  
N. SUBASH ◽  
B. GANGWAR ◽  
S. SINGH ◽  
A. K. KOSHAL ◽  
V. KUMAR

SUMMARYIdentification of climate-smart nutrient management practices will overcome the ill effects of extreme climate variability on agricultural production under projected climate change scenarios. The rice–wheat cropping system is the major system used in India: using long-term yield data from Integrated Nutrient Management experiments on this system, the present study analysed trends in weather parameters and grain yield under different nutrient management practices. Twelve treatments with different combinations of inorganic (chemical fertilizer) and organic (farmyard manure (FYM), green manure (GM) and crop residue) sources of nutrients were compared with farmers’ conventional practices. A significant increasing trend was noticed for rainfall during the rice season at Kalyani and Navsari, of the order of 137·7 and 154·2 mm/decade, respectively. The highest increase in maximum temperature was seen at Palampur (1·62 °C/decade) followed by Ludhiana (1·14 °C/decade). At all the sites except Ludhiana and Kanpur, the yield of the rice–wheat system showed an increasing trend ranging from 0·08 t/ha/year in Jabalpur to 0·011 t/ha/year in Navsari, under the recommended dose of inorganic fertilizer application. A significant decreasing trend of 0·055 t/ha was found in Ludhiana. For most of the sites, a combination of half the recommended dose of inorganic fertilizer and either FYM or GM to provide the remainder of the N required was sufficient to maintain productivity. The top three climate-resilient integrated nutrient management practices were identified for all the study sites. Thus, the present study highlights the adaptive capacity of different integrated nutrient management practices to rainfall and temperature extremes under rice–wheat cropping system in distinctive agro-ecological zones of India.


2020 ◽  
Vol 21 (supplement 1) ◽  
Author(s):  
P. Bose ◽  
M. Roy ◽  
P.K Patra ◽  
P.K Patra ◽  
P.K Patra

We analyzed data from a long-term rice-potato-groundnut cropping sequence to evaluate the effects of different nutrient management practices on yield trends, economics and soil fertility of the system. In this study, most of the organic and integrated treatments showed significantly higher mean system yield in terms of rice-equivalent yield (REY) of the 13th and 14th crop cyclethan that of with purely inorganic source. Highest mean rice-equivalent system yieldwas obtained in the treatment with 33% of recommended N each from FYM, vermicompost and Neem cake along with Azospirillum, Azotobacter, Rhizobium and PSB (14.96 t ha-1). In contrast with the yield result, purely inorganic treatment showed better performance compare to all other organic and integrated treatments from the economical point of view during last two 13th and 14 th cropping year. The organic nutrient-management packages increased the mean soil organic carbon and soil macronutrients (available N, P and K) at the end of 13th and 14 th cropping system cycle over the control (fallow land) and the buildup was maximum in the soil, applied with 33% of recommended N each from FYM, vermicompost and Neem cake along with Azospirillum, Azotobacter, Rhizobium and PSB (0.98%, 301.8, 61.1 and 173.3 kg/ha for organic carbon, N, P and K). The mean microbial population after thirteenth and fourteenth cropping year in terms of colony forming units increased in a higher rate in soils with organic nutrient supply system (bacteria 3.7 to 14.5 cfu g-1, fungi 3 to 12.3 cfu g-1) compared to the control as against the respective increases of 1.2 cfu g-1 and 1.8 cfu g-1 in the soils receiving nutrients through chemical fertilizers. Application of 33% of recommended N each from FYM, vermicompost and Neem cake along with Azospirillum, Azotobacter, Rhizobium and PSB was the best organic nutrient management practice compare to other studied management practices for rice–potato–groundnut cropping system in new alluvial zone of West


2014 ◽  
Vol 60 (No. 8) ◽  
pp. 351-357 ◽  
Author(s):  
A. Das ◽  
Sharma RP ◽  
N. Chattopadhyaya ◽  
R. Rakshit

We measured the long-term (28 years) sustainability of rice-wheat cropping system under integrated nutrient management practices emphasizing the trends in grain yields, sustainable yield index (SYI) and nutrient budgeting. The data of long-term experiment revealed that grain yield of both rice and wheat declined under control and sub-optimal fertilizer inputs (50% or 75% recommended fertilizer NPK). Negative yield trend (slope) was observed in control plots for rice (–0.0296) and wheat (–0.0070); whereas positive yield trend was observed under treatments receiving organic supplements. The SYI values indicate that rice yields are more sustainable than wheat. Data on apparent nutrient balance showed a deficit of N (–42.2 kg/ha/year), P (–9.1 kg/ha/year) and K (–52.2 kg/ha/year) under control plots. Surprisingly, there was net depletion of K under the organic supplemented plots. Correlation study revealed that apparent balance of K was negatively correlated with SYI (r = –0.921 for rice; r = –0.914 for wheat) and yield slope (r = –0.870 for rice; r = –0.896 for wheat). If the trend of K imbalance is not reversed, the potential to improve N and P fertilizer use efficiency and crop yields will be limited.


2019 ◽  
Vol 157 (03) ◽  
pp. 226-234 ◽  
Author(s):  
Ramphool Puniya ◽  
P. C. Pandey ◽  
P. S. Bisht ◽  
D. K. Singh ◽  
A. P. Singh

AbstractA field experiment was conducted to study the long-term effects of nutrient management practices on micronutrient concentrations in soil and their uptake by crops under a long-term rice–wheat cropping system. The treatments comprised different combinations of N, P, K, Zn and farm yard manure (FYM), used as nutrient management practices. After 25 years of continuous cropping, the higher grain yields and uptake of iron (Fe), manganese (Mn), copper (Cu) and zinc (Zn) were obtained when FYM was applied along with mineral sources of nitrogen, phosphorus and potassium (NPK) when compared to mineral sources of NPK alone. The residual effect of FYM, applied to rice, on the yield of subsequent wheat was significant. The application of mineral NPK with FYM recorded higher diethylene triamine penta acetic acid extracted (DTPA)-Fe, Mn and Cu concentrations in the soil compared to any other treatment. The plots with Zn application showed higher DTPA-Zn concentration in the soil compared to any other treatments. The available Fe, Mn and Cu in the soil were higher than their critical limits and the soil was low in Zn where inorganic fertilizers were applied alone (without Zn). Integrated application of mineral NPK and FYM to the rice crop and mineral NPK to wheat was found to be the best nutrient management practice in producing higher yields of rice and wheat and improve long-term soil micronutrient concentrations.


2013 ◽  
Vol 49 (2) ◽  
pp. 161-178 ◽  
Author(s):  
G. R. MARUTHI SANKAR ◽  
K. L. SHARMA ◽  
K. SRINIVAS REDDY ◽  
G. PRATIBHA ◽  
RESHMA SHINDE ◽  
...  

SUMMARYLong-term tillage and fertilizer experiments were conducted in rice in kharif followed by lentil in dry subhumid Inceptisols at Varanasi and Faizabad; horse gram at Phulbani and linseed at Ranchi in moist subhumid Alfisols in rabi during 2001 to 2010. The study was conducted to assess the effect of conventional tillage (CT), low tillage + interculture (LT1) and low tillage + herbicide (LT2) together with 100% N (organic) (F1), 50% N (organic) + 50% N (inorganic) (F2) and 100% N (inorganic) (F3) on productivity, profitability, rainwater and energy use efficiencies. The results at Varanasi revealed that CT was superior with mean yield of 2389 kg ha−1, while F1 was superior with 2378 kg ha−1 in rice. At Faizabad, CT was superior with mean rice yield of 1851 kg ha−1 and lentil yield of 977 kg ha−1, while F1 was superior with 1704 and 993 kg ha−1 of rice and lentil, respectively. At Phulbani, F2 was superior with rice yield of 1170 kg ha−1. At Ranchi, F2 with rice yield of 986 kg ha−1 and F3 with linseed yield of 224 kg ha−1 were superior. The regression model of crop seasonal rainfall and yield deviations indicated an increasing trend in rice yield over mean (positive deviation) with increase in rainfall at all locations; while a decreasing trend (negative deviation) was found for lentil at Faizabad, horse gram at Phulbani and linseed at Ranchi. Based on economic analysis, CTF1 at Varanasi and Faizabad, CTF2 at Phulbani and LT2F2 at Ranchi were superior.


Author(s):  
L A Gabbarini ◽  
E Figuerola ◽  
J P Frene ◽  
N B Robledo ◽  
F M Ibarbalz ◽  
...  

Abstract The effects of tillage on soil structure, physiology, and microbiota structure were studied in a long-term field experiment, with side-to-side plots, established to compare effects of conventional tillage (CT) vs. no-till (NT) agriculture. After 27 years, part of the field under CT was switched to NT and vice versa. Soil texture, soil enzymatic profiles, and the prokaryotic community structure (16S rRNA genes amplicon sequencing) were analysed at two soil depths (0–5, 5–10 cm) in samples taken 6, 18, and 30 months after switching tillage practices. Soil enzymatic activities were higher in NT than CT, and enzymatic profiles responded to the changes much earlier than the overall prokaryotic community structure. Beta diversity measurements of the prokaryotic community indicated that the levels of stratification observed in long-term NT soils were already recovered in the new NT soils thirty months after switching from CT to NT. Bacteria and Archaea OTUs, which responded to NT were associated with coarse soil fraction, SOC and C cycle enzymes while CT responders were related to fine soil fractions and S cycle enzymes. This study showed the potential of managing the soil prokaryotic community and soil health through changes in agricultural management practices.


Sign in / Sign up

Export Citation Format

Share Document