Properties of sol–gel SnO2/TiO2 electrodes and their photoelectrocatalytic activities under UV and visible light illumination

2009 ◽  
Vol 54 (4) ◽  
pp. 1304-1311 ◽  
Author(s):  
Lung-Chuan Chen ◽  
Fu-Ren Tsai ◽  
Shih-Hao Fang ◽  
Yi-Ching Ho
2016 ◽  
Vol 42 ◽  
pp. 73-79
Author(s):  
Fang Li Chi ◽  
Guo Dong Zhou ◽  
Biao Song ◽  
Bin Yang ◽  
Yao Hui Lv ◽  
...  

Visible light responsive CoTiO3 nanoparticles with average diameter of 100 nm were successfully synthesized by sol-gel method and were firstly applied to catalytic activation of peroxymonosulfate (PMS) for degradation of organic pollutants (Rhodamine B (RhB)). Photocatalytic experiments illustrated that CoTiO3 nanoparticles reveal good photocatalytic activity and excellent ability to activate PMS, the synergistic effect of visible light photocatalysis and sulfate radical generated from activated PMS can degradate RhB efficiently. Besides, CoTiO3 nanoparticles maintain their high photocatalytic and activation efficiency after three times recycling.


2018 ◽  
Vol 9 ◽  
pp. 1629-1640 ◽  
Author(s):  
Boštjan Žener ◽  
Lev Matoh ◽  
Giorgio Carraro ◽  
Bojan Miljević ◽  
Romana Cerc Korošec

Titanium dioxide photocatalysts have received a lot of attention during the past decades due to their ability to degrade various organic pollutants to CO2 and H2O, which makes them suitable for use in environmental related fields such as air and water treatment and self-cleaning surfaces. In this work, titania thin films and powders were prepared by a particulate sol–gel route, using titanium tetrachloride (TiCl4) as a precursor. Afterwards, the prepared sols were doped with nitrogen (ammonium nitrate, urea), sulfur (thiourea) and platinum (chloroplatinic acid), coated onto glass substrates by dip-coating, and thermally treated in a muffle furnace to promote crystallization. The resulting thin films were then characterized by various techniques (i.e., TGA-DSC-MS, XRD, BET, XPS, SEM, band gap measurements). The photocatalytic activity of the prepared thin films was determined by measuring the degradation rate of plasmocorinth B (PB), an organic pigment used in the textile industry, which can pose an environmental risk when expelled into wastewater. A kinetic model for adsorption and subsequent degradation was used to fit the experimental data. The results have shown an increase in photocatalytic activity under visible-light illumination of nonmetal and metal doped and co-doped titania thin films compared to an undoped sample.


2019 ◽  
Vol 97 (9) ◽  
pp. 672-681 ◽  
Author(s):  
Vuyolwethu O. Ndabankulu ◽  
Suresh Maddila ◽  
Sreekantha B. Jonnalagadda

Four different lanthanide (Ce, Dy, Lu, and Sm) doped TiO2 mesoporous materials were synthesised using the sol–gel method with titanium (IV) isopropoxide as the precursor. All of the synthesized materials were characterised using different analytical techniques, BET, PXRD, TEM, SEM-EDX, Raman, FTIR, photoluminescence, and UV-DRS spectroscopy. Photocatalytic activity and efficacy of the materials in the degradation of caffeine in aqueous solutions was investigated under visible light illumination. Although all materials showed good photocatalytic activity, Ce-doped TiO2 exhibited relatively better activity than the other three catalysts. High photoactivity of the catalysts was attributed to the presence of lanthanides and their ability to generate ions that scavenge electrons under visible light, thereby enhancing photodegradation of caffeine. All materials proved to be good and were recyclable without loss of catalytic activity up to three runs. An intermediate [N-1,3,6-trimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)formamide] (TDTF) and two products (6-amino-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropymidin-5-ly)-(methyl)-carbamic acid (ATCA) and N-methyl-N-(methylcarbomoyl)-2-oxoacetamide (MMO) were identified by the LC–MS spectra.


2021 ◽  
Vol 12 (2) ◽  
pp. 1628-1637

Photo-inactivation Staphylococcus aureus bacteria based on Mn-N-TiO2 composite coated wall paint is a unique study for preparing antibacterial material applied on wall house. Utilization of mixed material plays a role in activating under visible light illumination by sunlight to inactivate bacterially. Preparation of Mn-N-TiO2 composite by the sol-gel method using reflux for 3 h and coated with wall paint. The bacterial test uses Nutrient Broth (NB) to grow S. aureus, which is tested 3 times (triple). The yellow sol-gel produced by TiO2 doped Mn and N is functionally decreased bandgap as 2.8 eV. Subsequently, SEM/EDX data has characterized that the Ti, O, C, N and Mn elements are identified from composite Meanwhile, Ca is material produced from CaCO3 as wall paint colloidal. Based on these results, we report that the high concentration of Mn-N-TiO2 composite exhibited that the high inactivation response of S. aureus bacteria with 60% concentration is 87.73%.


2021 ◽  
Vol 947 (1) ◽  
pp. 012016
Author(s):  
Thi-Ngoc-Suong Ho ◽  
Manh-Thang Ngo ◽  
Minh-Vien Le

Abstract Ag-doped TiO2/SiO2 with visible light response was prepared by a simple sol-gel method using titanium w-butoxide (TNB), tetraethoxysilane (TEOS) as precursors, and silver nitrate (AgNO3). The synthesized Ag-TiO2/SiO2 were characterized by SEM, XRD, PL (photoluminescence) emission and UV-Vis absorption spectroscopy. Their photocatalytic activities were evaluated by treating aqueous solutions of phenol under simulated visible light illumination. The role of silver doped was investigated in the range 1% – 5% (molar ratio), resulting in the best bandgap value of 2.93 eV for Ag(3%)-TiO2/SiO2 compared to 3,18 eV for the un-doped TiO2/SiO2. Consequently, the best phenol treating yield – about 97% after 4 hours – was obtained using Ag(3%)-TiO2/SiO2. So the synthesized Ag(3%)-TiO2/SiO2 might serve as a potential photocatalyst for water treatment using visible lights.


2015 ◽  
Vol 19 (6) ◽  
pp. 512-520 ◽  
Author(s):  
Nikolaos Karanasios ◽  
Jenia Georgieva ◽  
Eugenia Valova ◽  
Stephan Armyanov ◽  
Georgios Litsardakis ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3948
Author(s):  
Lingfang Qiu ◽  
Zhiwei Zhou ◽  
Mengfan Ma ◽  
Ping Li ◽  
Jinyong Lu ◽  
...  

Novel visible-light responded aluminosilicophosphate-5 (SAPO-5)/g-C3N4 composite has been easily constructed by thermal polymerization for the mixture of SAPO-5, NH4Cl, and dicyandiamide. The photocatalytic activity of SAPO-5/g-C3N4 is evaluated by degrading RhB (30 mg/L) under visible light illumination (λ > 420 nm). The effects of SAPO-5 incorporation proportion and initial RhB concentration on the photocatalytic performance have been discussed in detail. The optimized SAPO-5/g-C3N4 composite shows promising degradation efficiency which is 40.6% higher than that of pure g-C3N4. The degradation rate improves from 0.007 min−1 to 0.022 min−1, which is a comparable photocatalytic performance compared with other g-C3N4-based heterojunctions for dye degradation. The migration of photo-induced electrons from g-C3N4 to the Al site of SAPO-5 should promote the photo-induced electron-hole pairs separation rate of g-C3N4 efficiently. Furthermore, the redox reactions for RhB degradation occur on the photo-induced holes in the g-C3N4 and Al sites in SAPO-5, respectively. This achievement not only improves the photocatalytic activity of g-C3N4 efficiently, but also broadens the application of SAPOs in the photocatalytic field.


Applied Nano ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 148-161
Author(s):  
Katerina Govatsi ◽  
Aspasia Antonelou ◽  
Labrini Sygellou ◽  
Stylianos G. Neophytides ◽  
Spyros N. Yannopoulos

The rational synthesis of semiconducting materials with enhanced photoelectrocatalytic efficiency under visible light illumination is a long-standing issue. ZnO has been systematically explored in this field, as it offers the feasibility to grow a wide range of nanocrystal morphology; however, its wide band gap precludes visible light absorption. We report on a novel method for the controlled growth of semiconductor heterostructures and, in particular, core/sheath ZnO/MoS2 nanowire arrays and the evaluation of their photoelectrochemical efficiency in oxygen evolution reaction. ZnO nanowire arrays, with a narrow distribution of nanowire diameters, were grown on FTO substrates by chemical bath deposition. Layers of Mo metal at various thicknesses were sputtered on the nanowire surface, and the Mo layers were sulfurized at low temperature, providing in a controlled way few layers of MoS2, in the range from one to three monolayers. The heterostructures were characterized by electron microscopy (SEM, TEM) and spectroscopy (XPS, Raman, PL). The photoelectrochemical properties of the heterostructures were found to depend on the thickness of the pre-deposited Mo film, exhibiting maximum efficiency for moderate values of Mo film thickness. Long-term stability, in relation to similar heterostructures in the literature, has been observed.


Sign in / Sign up

Export Citation Format

Share Document