CoTiO3 Nanoparticles as a Highly Active Heterogeneous Catalyst of Peroxymonosulfate for the Degradation of Organic Pollutants under Visible-Light Illumination

2016 ◽  
Vol 42 ◽  
pp. 73-79
Author(s):  
Fang Li Chi ◽  
Guo Dong Zhou ◽  
Biao Song ◽  
Bin Yang ◽  
Yao Hui Lv ◽  
...  

Visible light responsive CoTiO3 nanoparticles with average diameter of 100 nm were successfully synthesized by sol-gel method and were firstly applied to catalytic activation of peroxymonosulfate (PMS) for degradation of organic pollutants (Rhodamine B (RhB)). Photocatalytic experiments illustrated that CoTiO3 nanoparticles reveal good photocatalytic activity and excellent ability to activate PMS, the synergistic effect of visible light photocatalysis and sulfate radical generated from activated PMS can degradate RhB efficiently. Besides, CoTiO3 nanoparticles maintain their high photocatalytic and activation efficiency after three times recycling.

2019 ◽  
Vol 9 (6) ◽  
pp. 1357-1364 ◽  
Author(s):  
Ning-Chao Zheng ◽  
Ting Ouyang ◽  
Yibo Chen ◽  
Zhu Wang ◽  
Di-Yun Chen ◽  
...  

By virtue of the systematic effects of S-doping on CeO2 and the ultrathin shell structure of CdS, the CeO2−xSx@CdS nanocomposite exhibits excellent photocatalytic activity under visible-light illumination for both H2 evolution (rate up to 1147.2 μmol g−1 h−1) and RhB degradation (efficiency reached 99.8%) as compared to CeO2, CeO2−xSx, and CdS.


2015 ◽  
Vol 5 (8) ◽  
pp. 4055-4063 ◽  
Author(s):  
Arpita Sarkar ◽  
Abhisek Brata Ghosh ◽  
Namrata Saha ◽  
Amit Kumar Dutta ◽  
Divesh N. Srivastava ◽  
...  

Eu-doped Bi2S3 nanoflowers possess highly visible light driven photocatalytic activity towards degradation of organic pollutants.


2018 ◽  
Vol 9 ◽  
pp. 1629-1640 ◽  
Author(s):  
Boštjan Žener ◽  
Lev Matoh ◽  
Giorgio Carraro ◽  
Bojan Miljević ◽  
Romana Cerc Korošec

Titanium dioxide photocatalysts have received a lot of attention during the past decades due to their ability to degrade various organic pollutants to CO2 and H2O, which makes them suitable for use in environmental related fields such as air and water treatment and self-cleaning surfaces. In this work, titania thin films and powders were prepared by a particulate sol–gel route, using titanium tetrachloride (TiCl4) as a precursor. Afterwards, the prepared sols were doped with nitrogen (ammonium nitrate, urea), sulfur (thiourea) and platinum (chloroplatinic acid), coated onto glass substrates by dip-coating, and thermally treated in a muffle furnace to promote crystallization. The resulting thin films were then characterized by various techniques (i.e., TGA-DSC-MS, XRD, BET, XPS, SEM, band gap measurements). The photocatalytic activity of the prepared thin films was determined by measuring the degradation rate of plasmocorinth B (PB), an organic pigment used in the textile industry, which can pose an environmental risk when expelled into wastewater. A kinetic model for adsorption and subsequent degradation was used to fit the experimental data. The results have shown an increase in photocatalytic activity under visible-light illumination of nonmetal and metal doped and co-doped titania thin films compared to an undoped sample.


2018 ◽  
Vol 47 (35) ◽  
pp. 12253-12263 ◽  
Author(s):  
Usman Ali Khan ◽  
Jianjun Liu ◽  
Jinbo Pan ◽  
Shengli Zuo ◽  
Hecheng Ma ◽  
...  

In this paper, we present the fabrication of an expanded-perlite (EP)-based floating photocatalyst comprising CdS and Ag nanoparticles.


2008 ◽  
Vol 245 (9) ◽  
pp. 1807-1815 ◽  
Author(s):  
Haimei Liu ◽  
Akihito Imanishi ◽  
Ryuhei Nakamura ◽  
Yoshihiro Nakato

2019 ◽  
Vol 97 (9) ◽  
pp. 672-681 ◽  
Author(s):  
Vuyolwethu O. Ndabankulu ◽  
Suresh Maddila ◽  
Sreekantha B. Jonnalagadda

Four different lanthanide (Ce, Dy, Lu, and Sm) doped TiO2 mesoporous materials were synthesised using the sol–gel method with titanium (IV) isopropoxide as the precursor. All of the synthesized materials were characterised using different analytical techniques, BET, PXRD, TEM, SEM-EDX, Raman, FTIR, photoluminescence, and UV-DRS spectroscopy. Photocatalytic activity and efficacy of the materials in the degradation of caffeine in aqueous solutions was investigated under visible light illumination. Although all materials showed good photocatalytic activity, Ce-doped TiO2 exhibited relatively better activity than the other three catalysts. High photoactivity of the catalysts was attributed to the presence of lanthanides and their ability to generate ions that scavenge electrons under visible light, thereby enhancing photodegradation of caffeine. All materials proved to be good and were recyclable without loss of catalytic activity up to three runs. An intermediate [N-1,3,6-trimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)formamide] (TDTF) and two products (6-amino-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropymidin-5-ly)-(methyl)-carbamic acid (ATCA) and N-methyl-N-(methylcarbomoyl)-2-oxoacetamide (MMO) were identified by the LC–MS spectra.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1399
Author(s):  
Congcong Xing ◽  
Yu Zhang ◽  
Yongpeng Liu ◽  
Xiang Wang ◽  
Junshan Li ◽  
...  

The photodehydrogenation of ethanol is a sustainable and potentially cost-effective strategy to produce hydrogen and acetaldehyde from renewable resources. The optimization of this process requires the use of highly active, stable and selective photocatalytic materials based on abundant elements and the proper adjustment of the reaction conditions, including temperature. In this work, Cu2O-TiO2 type-II heterojunctions with different Cu2O amounts are obtained by a one-pot hydrothermal method. The structural and chemical properties of the produced materials and their activity toward ethanol photodehydrogenation under UV and visible light illumination are evaluated. The Cu2O-TiO2 photocatalysts exhibit a high selectivity toward acetaldehyde production and up to tenfold higher hydrogen evolution rates compared to bare TiO2. We further discern here the influence of temperature and visible light absorption on the photocatalytic performance. Our results point toward the combination of energy sources in thermo-photocatalytic reactors as an efficient strategy for solar energy conversion.


Sign in / Sign up

Export Citation Format

Share Document