High performance asymmetric supercapacitor having novel 3D networked polypyrrole nanotube/N-doped graphene negative electrode and core-shelled MoO3/PPy supported MoS2 positive electrode

2019 ◽  
Vol 320 ◽  
pp. 134533 ◽  
Author(s):  
Fitri Nur Indah Sari ◽  
Jyh-Ming Ting
Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1195
Author(s):  
Jianhao Lin ◽  
Xusheng Du

Urchin-like tungsten oxide (WO3) microspheres self-assembled with nanobelts are deposited on the surface of the hydrophilic carbon cloth (CC) current collector via hydrothermal reaction. The WO3 nanobelts in the urchin-like microspheres are in the hexagonal crystalline phase, and their widths are around 30–50 nm. The resulted hierarchical WO3 / CC electrode exhibits a capacitance of 3400 mF / cm2 in H2SO4 electrolyte in the voltage window of −0.5 ~ 0.2 V, which makes it an excellent negative electrode for asymmetric supercapacitors. To improve the capacitive performance of the positive electrode and make it comparable with that of the WO3 / CC electrode, both the electrode material and the electrolyte have been carefully designed and prepared. Therefore, the hydrophilic CC is further coated with carbon nanotubes (CNTs) to create a hierarchical CNT / CC electrode via a convenient flame synthesis method, and a redox-active electrolyte containing an Fe2+ / Fe 3+ couple is introduced into the half-cell system as well. As a result, the high performance of the asymmetric supercapacitor assembled with both the asymmetric electrodes and electrolytes has been realized. It exhibits remarkable energy density as large as 403 μW h / cm2 at 15 mW / cm2 and excellent cyclic stability after 10,000 cycles.


2019 ◽  
Vol 43 (32) ◽  
pp. 12623-12629 ◽  
Author(s):  
Hui Peng ◽  
Xiuwen Dai ◽  
Kanjun Sun ◽  
Xuan Xie ◽  
Fei Wang ◽  
...  

The novel asymmetric supercapacitor was assembled based on a three-dimensional (3D) interconnected porous carbon framework as the negative electrode and 3D sphere-like nickel nitride nanosheets as the positive electrode in aqueous electrolyte.


Author(s):  
Jian Zhao ◽  
He Cheng ◽  
Huanyu Li ◽  
Yan-Jie Wang ◽  
Qingyan Jiang ◽  
...  

Developing advanced negative and positive electrode materials for asymmetric supercapacitors (ASCs) as the electrochemical energy storage can enable the device to reach high energy/power densities resulting from the cooperative effect...


RSC Advances ◽  
2015 ◽  
Vol 5 (21) ◽  
pp. 16319-16327 ◽  
Author(s):  
Ganesh Kumar Veerasubramani ◽  
Karthikeyan Krishnamoorthy ◽  
Sang Jae Kim

In this article, we report the fabrication and electrochemical performance of asymmetric supercapacitors (ASCs) based on a reduced graphene oxide (rGO) negative electrode and a cobalt molybdate (CoMoO4) positive electrode.


RSC Advances ◽  
2019 ◽  
Vol 9 (53) ◽  
pp. 30957-30963 ◽  
Author(s):  
Si Chen ◽  
Xuejiao Zhou ◽  
Xinzhi Ma ◽  
Lu Li ◽  
Panpan Sun ◽  
...  

Here we describe an aqueous asymmetric supercapacitor assembled using Co(OH)F nanorods on Ni foam (Co(OH)F@NF) as the positive electrode and layered Ti3C2Tx paper on Ni foam (Ti3C2Tx@NF) as the negative electrode.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2303
Author(s):  
Wei Meng ◽  
Yanlin Xia ◽  
Chuanguo Ma ◽  
Xusheng Du

Transition molybdenum oxides (MoO3) and conductive polymer (polyaniline, PANI) nanomaterials were fabricated and asymmetric supercapacitor (ASC) was assembled with MoO3 nanobelts as negative electrode and PANI nanofibers as a positive electrode. Branched PANI nanofibers with a diameter of 100 nm were electrodeposited on Ti mesh substrate and MoO3 nanobelts with width of 30–700 nm were obtained by the hydrothermal reaction method in an autoclave. Redox active electrolyte containing 0.1 M Fe2+/3+ redox couple was adopted in order to enhance the electrochemical performance of the electrode nano-materials. As a result, the PANI electrode shows a great capacitance of 3330 F g−1 at 1 A g−1 in 0.1 M Fe2+/3+/0.5 M H2SO4 electrolyte. The as-assembled ASC achieved a great energy density of 54 Wh kg−1 at power density of 900 W kg−1. In addition, it displayed significant cycle stability and its capacitance even increased to 109% of the original value after 1000 charge–discharge cycles. The superior performance of the capacitors indicates their promising application as energy storage devices.


2015 ◽  
Vol 3 (31) ◽  
pp. 16150-16161 ◽  
Author(s):  
Dezhi Kong ◽  
Chuanwei Cheng ◽  
Ye Wang ◽  
Jen It Wong ◽  
Yaping Yang ◽  
...  

A novel asymmetric supercapacitor composed of Co3O4@C@Ni3S2 NNAs as the positive electrode and activated carbon (AC) as the negative electrode can deliver a high energy density and excellent long cycle stability.


2019 ◽  
Vol 177 ◽  
pp. 107373 ◽  
Author(s):  
Souvik Ghosh ◽  
J. Sharath Kumar ◽  
Naresh Chandra Murmu ◽  
R. Sankar Ganesh ◽  
Hiroshi Inokawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document