Hydrothermally derived three-dimensional porous hollow double-walled Mn2O3 nanocubes as superior electrode materials for supercapacitor applications

2020 ◽  
Vol 355 ◽  
pp. 136783 ◽  
Author(s):  
Sajid Ali Ansari ◽  
Nazish Parveen ◽  
H. Mahfoz Kotb ◽  
Adil Alshoaibi
MRS Advances ◽  
2016 ◽  
Vol 1 (45) ◽  
pp. 3089-3097 ◽  
Author(s):  
H. Adhikari ◽  
C. Ranaweera ◽  
R. Gupta ◽  
S. R. Mishra

ABSTRACTA facile hydrothermal method was used to synthesize molybdenum disulfide (MoS2) microspheres. The effect of hydrothermal reaction time on morphology and electrochemical properties of MoS2 microspheres was evaluated. X-ray diffraction showed presence of crystalline MoS2 structure, where content of crystalline phase was observed to increase with hydrothermal reaction time. Electrochemical properties of MoS2 were evaluated using cyclic voltammetry (CV) and galvanostatic charge-discharge in 3M KOH solution. Specific capacitance of nanostructured MoS2 was observed to be between 68 F/g and 346 F/g at different scan rates along with excellent cyclic stability. High power density (∼1200 W/kg) and energy density (∼5 Wh/kg) was observed for MoS2 sample synthesized for 24 hours of hydrothermal reaction time. Overall optimal electrocapactive performance was observed for sample prepared for 24 hours of reaction time. It is demonstrated that the obtained MoS2 microspheres with three-dimensional architecture has excellent electrochemical performances as electrode materials for supercapacitor applications.


2017 ◽  
Vol 41 (18) ◽  
pp. 10467-10475 ◽  
Author(s):  
Nazish Parveen ◽  
Sajid Ali Ansari ◽  
S. G. Ansari ◽  
H. Fouad ◽  
Moo Hwan Cho

Anchoring of three dimensional (3D) metal oxides with a controlled morphology on a reduced graphene sheet (rGO) is a promising and challenging route towards the development of highly efficient electrode materials for supercapacitor applications.


Author(s):  
Tingting Xia ◽  
Chengfei Xu ◽  
Pengfei Dai ◽  
Xiaoyun Li ◽  
Riming Lin ◽  
...  

Three-dimensional (3D) conductive polymers are promising conductive matrices for electrode materials toward electrochemical energy storage. However, their fragile nature and weak binding forces with active materials could not guarantee long-term...


RSC Advances ◽  
2015 ◽  
Vol 5 (38) ◽  
pp. 30260-30267 ◽  
Author(s):  
Hanlin Cheng ◽  
Hai M. Duong

CNT gel composite presenting different structures have been developed with excellent electrochemical performance for supercapacitor applications.


2021 ◽  
Author(s):  
Feiqiang Guo ◽  
Yinbo Zhan ◽  
Xiaopeng Jia ◽  
Huiming Zhou ◽  
Shuang Liang ◽  
...  

Using Sargassum as the precursor, a novel approach was developed to synthesize three-dimensional porous carbons as high-performance electrode materials for supercapacitors via KOH activation and subsequent nitrogen-doping employing melamine as...


2019 ◽  
Vol 6 (5) ◽  
pp. 1255-1272 ◽  
Author(s):  
U. Naveen Kumar ◽  
Sourav Ghosh ◽  
Tiju Thomas

Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 574
Author(s):  
Emilius Sudirjo ◽  
Paola Y. Constantino Diaz ◽  
Matteo Cociancich ◽  
Rens Lisman ◽  
Christian Snik ◽  
...  

Large-scale implementation of (plant) microbial fuel cells is greatly limited by high electrode costs. In this work, the potential of exploiting electrochemically active self-assembled biofilms in fabricating three-dimensional bioelectrodes for (plant) microbial fuel cells with minimum use of electrode materials was studied. Three-dimensional robust bioanodes were successfully developed with inexpensive polyurethane foams (PU) and activated carbon (AC). The PU/AC electrode bases were fabricated via a water-based sorption of AC particles on the surface of the PU cubes. The electrical current was enhanced by growth of bacteria on the PU/AC bioanode while sole current collectors produced minor current. Growth and electrochemical activity of the biofilm were shown with SEM imaging and DNA sequencing of the microbial community. The electric conductivity of the PU/AC electrode enhanced over time during bioanode development. The maximum current and power density of an acetate fed MFC reached 3 mA·m−2 projected surface area of anode compartment and 22 mW·m−3 anode compartment. The field test of the Plant-MFC reached a maximum performance of 0.9 mW·m−2 plant growth area (PGA) at a current density of 5.6 mA·m−2 PGA. A paddy field test showed that the PU/AC electrode was suitable as an anode material in combination with a graphite felt cathode. Finally, this study offers insights on the role of electrochemically active biofilms as natural enhancers of the conductivity of electrodes and as transformers of inert low-cost electrode materials into living electron acceptors.


CrystEngComm ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 1633-1644 ◽  
Author(s):  
Sudipta Biswas ◽  
Vikas Sharma ◽  
Debabrata Mandal ◽  
Ananya Chowdhury ◽  
Mayukh Chakravarty ◽  
...  

Comparative study of TMO based hollow and solid nanostructures for supercapacitor applications.


Sign in / Sign up

Export Citation Format

Share Document