Passivation kinetics of a high nitrogen face-centered-cubic phase formed on AISI 304L austenitic stainless steel in borate buffer solutions by photo- and electrochemical methods

2021 ◽  
pp. 139110
Author(s):  
S. Tong ◽  
H.L. Che ◽  
K.S. Wang ◽  
M.K. Lei
2008 ◽  
Vol 373-374 ◽  
pp. 318-321
Author(s):  
J. Liang ◽  
M.K. Lei

Effects of stacking faults in a high nitrogen face-centered-cubic phase (γΝ) formed on plasma source ion nitrided 1Cr18Ni9Ti (18-8 type) austenitic stainless steel on peak shift and peak asymmetry of x-ray diffraction were investigated based on Warren’s theory and Wagner’s method, respectively. The peak shift from peak position of the γΝ phase is ascribed to the deformation faults density α, while the peak asymmetry of the γΝ phase is characterized by deviation of the center of gravity of a peak from the peak maximum (Δ C.G.) due to the twin faults density β. The calculated peak positions of x-ray diffraction patterns are consistent with that measured for plasma source ion nitrided 1Cr18Ni9Ti stainless steel.


2004 ◽  
Vol 19 (6) ◽  
pp. 1696-1702 ◽  
Author(s):  
X. Zhang ◽  
A. Misra ◽  
R.K. Schulze ◽  
C.J. Wetteland ◽  
H. Wang ◽  
...  

Bulk austenitic stainless steels (SS) have a face-centered cubic (fcc) structure. However, sputter deposited films synthesized using austenitic stainless steel targets usually exhibit body-centered cubic (bcc) structure or a mixture of fcc and bcc phases. This paper presents studies on the effect of processing parameters on the phase stability of 304 and 330 SS thin films. The 304 SS thin films with in-plane, biaxial residual stresses in the range of approximately 1 GPa (tensile) to approximately 300 MPa (compressive) exhibited only bcc structure. The retention of bcc 304 SS after high-temperature annealing followed by slow furnace cooling indicates depletion of Ni in as-sputtered 304 SS films. The 330 SS films sputtered at room temperature possess pure fcc phase. The Ni content and the substrate temperature during deposition are crucial factors in determining the phase stability in sputter deposited austenitic SS films.


2019 ◽  
Vol 52 (5) ◽  
pp. 1176-1188 ◽  
Author(s):  
Yunhao Huang ◽  
Jincheng Wang ◽  
Zhijun Wang ◽  
Junjie Li

Atomic structures and migration mechanisms of interphase boundaries have been of scientific interest for many years owing to their significance in the field of phase transformations. Though the interphase boundary structures can be deduced from crystallographic investigations, the detailed atomic structures and migration mechanisms of interphase boundaries during phase transformations are still poorly understood. In this study, a systematic study on atomic structures and migration mechanisms of interphase boundaries in a body-centered cubic (b.c.c.) to face-centered cubic (f.c.c.) massive transformation was carried out using the phase-field crystal model. Simulation results show that the f.c.c./b.c.c. interphase boundaries can be classified into faceted interphase boundaries and side surfaces. The faceted interphase boundaries are semi-coherent with a group of dislocations, leading to a ledge migration mechanism, while the side surfaces are incoherent and thus migrate in a continuous way. After a careful analysis of the simulated migration process of interphase boundaries at atomic scales, a detailed description of the ledge mechanism based on the motion and nucleation of interphase boundary dislocations is presented. The ledge-forming process is accompanied by the nucleation of new heterogeneous dislocations and motions of original dislocations, and thus the barrier of ledge formation comes from the hindrance of these two dislocation behaviors. Once the ledge is formed, the original dislocations continue to advance until the ledge height reaches 1/|Δg|, where Δg represents the difference in reciprocal lattice vectors between two phases. The new heterogeneous dislocation moves along the radial direction of the interphase boundary, resulting in ledge extension. The interface dislocation behaviors greatly affect the migration of the interphase boundary, leading to different migration kinetics of faceted interphase boundaries under the Kurdjumov–Sachs and the Nishiyama–Wasserman orientation relationships. This study revealed the mechanisms and kinetics of complex structure transition during a b.c.c.–f.c.c. massive phase transformation and can shed some light on the process of solid phase transformations.


Sign in / Sign up

Export Citation Format

Share Document