Application of near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) in an in-situ analysis of the stability of the surface-supported metal-organic framework HKUST-1 in water, methanol and pyridine atmospheres

Author(s):  
Marit Kjærvik ◽  
Paul M. Dietrich ◽  
Andreas Thissen ◽  
Jörg Radnik ◽  
Alexei Nefedov ◽  
...  
2021 ◽  
Author(s):  
Gregory M. Su ◽  
Han Wang ◽  
Brandon R. Barnett ◽  
Jeffrey R. Long ◽  
David Prendergast ◽  
...  

In situ near edge X-ray absorption fine structure spectroscopy directly probes unoccupied states associated with backbonding interactions between the open metal site in a metal–organic framework and various small molecule guests.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
José María Rivera ◽  
Susana Rincón ◽  
Cherif Ben Youssef ◽  
Alejandro Zepeda

Mesoporous metal-organic framework-5 (MOF-5), with the composition Zn4O(BDC)3, showed a high capacity for the adsorptive removal of Pb(II) from 100% aqueous media. After the adsorption process, changes in both morphology and composition were detected using a scanning electron microscope (SEM) equipped with an energy dispersive X-ray (EDX) system, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analysis. The experimental evidence showed that Zn(II) liberation from MOF-5 structure was provoked by the water effect demonstrating that Pb(II) removal is not due to ionic exchange with Zn. A kinetic study showed that Pb(II) removal was carried out in 30 min with a behavior of pseudo-second-order kinetic model. The experimental data on Pb(II) adsorption were adequately fit by both the Langmuir and BET isotherm models with maximum adsorption capacities of 658.5 and 412.7 mg/g, respectively, at pH 5 and 45°C. The results of this work demonstrate that the use of MOF-5 has great potential for applications in environmental protection, especially regarding the removal of the lead present in industrial wastewaters and tap waters.


2015 ◽  
Vol 17 (26) ◽  
pp. 17471-17479 ◽  
Author(s):  
Volodymyr Bon ◽  
Nicole Klein ◽  
Irena Senkovska ◽  
Andreas Heerwig ◽  
Jürgen Getzschmann ◽  
...  

The “gate opening” mechanism in flexible MOF Ni2(2,6-ndc)2dabco was elucidated in detail.


2019 ◽  
Author(s):  
Luzia S. Germann ◽  
Athanassios D. Katsenis ◽  
Igor Huskić ◽  
Patrick A. Julien ◽  
Krunoslav Uzarevic ◽  
...  

Manuscript about monitoring the mechanochemical reaction of a metal-organic framework model system by in situ X-ray powder diffraction<br>


2019 ◽  
Author(s):  
Luzia S. Germann ◽  
Athanassios D. Katsenis ◽  
Igor Huskić ◽  
Patrick A. Julien ◽  
Krunoslav Uzarevic ◽  
...  

Manuscript about monitoring the mechanochemical reaction of a metal-organic framework model system by in situ X-ray powder diffraction<br>


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Pham Dinh Du ◽  
Huynh Thi Minh Thanh ◽  
Thuy Chau To ◽  
Ho Sy Thang ◽  
Mai Xuan Tinh ◽  
...  

In the present paper, the synthesis of metal-organic framework MIL-101 and its application in the photocatalytic degradation of Remazol Black B (RBB) dye have been demonstrated. The obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption/desorption isotherms at 77 K. It was found that MIL-101 synthesized under optimal conditions exhibited high crystallinity and specific surface area (3360 m2·g-1). The obtained MIL-101 possessed high stability in water for 14 days and several solvents (benzene, ethanol, and water at boiling temperature). Its catalytic activities were evaluated by measuring the degradation of RBB in an aqueous solution under UV radiation. The findings show that MIL-101 was a heterogeneous photocatalyst in the degradation reaction of RBB. The mechanism of photocatalysis was considered to be achieved by the electron transfer from photoexcited organic ligands to metallic clusters in MIL-101. The kinetics of photocatalytic degradation reaction were analyzed by using the initial rate method and Langmuir-Hinshelwood model. The MIL-101 photocatalyst exhibited excellent catalytic recyclability and stability and can be a potential catalyst for the treatment of organic pollutants in aqueous solutions.


Sign in / Sign up

Export Citation Format

Share Document