Modeling lattice rotation fields from discrete crystallographic slip bands in superalloys

2021 ◽  
Vol 49 ◽  
pp. 101468
Author(s):  
Marat I. Latypov ◽  
Jonathan M. Hestroffer ◽  
Jean-Charles Stinville ◽  
Jason R. Mayeur ◽  
Tresa M. Pollock ◽  
...  
2006 ◽  
Vol 519-521 ◽  
pp. 809-814 ◽  
Author(s):  
Hans Bjerkaas ◽  
Snorre Kjørstad Fjeldbo ◽  
Hans Jørgen Roven ◽  
Jarle Hjelen ◽  
Rémi Chiron ◽  
...  

The crystallographic slip activity in several grains deformed by simple tension is determined by use of in-situ deformation in combination with Electron Back Scattering Diffraction (EBSD)-investigations and Secondary Electron (SE) imaging. This technique is also used to determine grain lattice rotation paths of grains with different initial orientation, providing information on basic deformation mechanisms of grains present in texture gradients. Both slip activity and grain lattice rotation paths depend on the initial orientation and are influenced by the neighbouring grain orientations. This indicates that predictions of the forming behaviour of extruded profiles with a strong through thickness texture gradient relate to a very complex nature.


2020 ◽  
Vol 321 ◽  
pp. 11074
Author(s):  
C. Lavogiez ◽  
S. Hémery ◽  
P. Villechaise

The present article reports an investigation of the mechanism of surface crack initiation of a dwell fatigue tested Ti-6Al-4V alloy with a bi-modal microstructure. Interactions between slip bands and grain boundaries were characterized in order to obtain insights into the crack initiation process and discuss the similarities with models described in the literature. Twinning and local lattice rotation occurred as a result of the slip band blocking at the interface and suggests high local stress concentrations. Nevertheless, crack initiation happened to be intergranular and not transgranular. The crack opened up the basal plane that was located at the interface between two nodules poorly oriented for slip and having a common c axis of the hexagonal unit cell.


2014 ◽  
Vol 891-892 ◽  
pp. 1705-1710
Author(s):  
Takashi Sumigawa ◽  
Kenta Matsumoto ◽  
Takayuki Kitamura

In order to investigate the effect of microscopic structure on fatigue behavior of nanoscale components, a resonant fatigue experiment is conducted using a nanocomponents specimen where the test section is composed of a single crystalline Si substrate, a 200 nm thickness Cu polycrystalline film and a SiN amorphous layer. In the specimen, only the Cu portion plastically deforms because the yield stress is lower than those of other materials. The shape and the crystalline orientation of each grain on the surface of Cu portion are specified by means of EBSD. Although crystallographic slip bands with a width of a few tens of nanometers appear only in a grain of Cu portion, the grain is different from that expected by the Schmid factor. A FEM analysis, which takes into account the deformation anisotropy of grains, reveals that shear stress to generate slip bands is concentrated on the grain owing to the deformation constraint by neighboring crystals and components.


Author(s):  
N. Y. Jin

Localised plastic deformation in Persistent Slip Bands(PSBs) is a characteristic feature of fatigue in many materials. The dislocation structure in the PSBs contains regularly spaced dislocation dipole walls occupying a volume fraction of around 10%. The remainder of the specimen, the inactive "matrix", contains dislocation veins at a volume fraction of 50% or more. Walls and veins are both separated by regions in which the dislocation density is lower by some orders of magnitude. Since the PSBs offer favorable sites for the initiation of fatigue cracks, the formation of the PSB wall structure is of great interest. Winter has proposed that PSBs form as the result of a transformation of the matrix structure to a regular wall structure, and that the instability occurs among the broad dipoles near the center of a vein rather than in the hard shell surounding the vein as argued by Kulmann-Wilsdorf.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1189
Author(s):  
Yingjue Xiong ◽  
Qinmeng Luan ◽  
Kailun Zheng ◽  
Wei Wang ◽  
Jun Jiang

During plastic deformation, the change of structural states is known to be complicated and indeterminate, even in single crystals. This contributes to some enduring problems like the prediction of deformed texture and the commercial applications of such material. In this work, plane strain compression (PSC) tests were designed and implemented on single crystal pure aluminum to reveal the deformation mechanism. PSC tests were performed at different strain rates under strain control in either one-directional or two-directional compression. The deformed microstructures were analyzed according to the flow curve and the electron back-scattered diffraction (EBSD) mappings. The effects of grain orientation, strain rate, and strain path on the deformation and mechanical response were analyzed. Experimental results revealed that the degree of lattice rotation of one-dimensional compression mildly dependents on cube orientation, but it is profoundly sensitive to the strain rate. For two-dimensional compression, the softening behavior is found to be more pronounced in the case that provides greater dislocations gliding freeness in the first loading. Results presented in this work give new insights into aluminum deformation, which provides theoretical support for forming and manufacturing of aluminum.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 416 ◽  
Author(s):  
Damien Colas ◽  
Eric Finot ◽  
Sylvain Flouriot ◽  
Samuel Forest ◽  
Matthieu Mazière ◽  
...  

This work provides an experimental and computational analysis of low cycle fatigue of a tantalum polycrystalline aggregate. The experimental results include strain field and lattice rotation field measurements at the free surface of a tension–compression test sample after 100, 1000, 2000, and 3000 cycles at ±0.2% overall strain. They reveal the development of strong heterogeneites of strain, plastic slip activity, and surface roughness during cycling. Intergranular and transgranular cracks are observed after 5000 cycles. The Crystal Plasticity Finite Element simulation recording more than 1000 cycles confirms the large strain dispersion at the free surface and shows evidence of strong local ratcheting phenomena occurring in particular at some grain boundaries. The amount of ratcheting plastic strain at each cycle is used as the main ingredient of a new local fatigue crack initiation criterion.


2021 ◽  
Vol 69 (3) ◽  
Author(s):  
S. J. Eder ◽  
P. G. Grützmacher ◽  
M. Rodríguez Ripoll ◽  
J. F. Belak

Abstract Depending on the mechanical and thermal energy introduced to a dry sliding interface, the near-surface regions of the mated bodies may undergo plastic deformation. In this work, we use large-scale molecular dynamics simulations to generate “differential computational orientation tomographs” (dCOT) and thus highlight changes to the microstructure near tribological FCC alloy surfaces, allowing us to detect subtle differences in lattice orientation and small distances in grain boundary migration. The analysis approach compares computationally generated orientation tomographs with their undeformed counterparts via a simple image analysis filter. We use our visualization method to discuss the acting microstructural mechanisms in a load- and time-resolved fashion, focusing on sliding conditions that lead to twinning, partial lattice rotation, and grain boundary-dominated processes. Extracting and laterally averaging the color saturation value of the generated tomographs allows us to produce quantitative time- and depth-resolved maps that give a good overview of the progress and severity of near-surface deformation. Corresponding maps of the lateral standard deviation in the color saturation show evidence of homogenization processes occurring in the tribologically loaded microstructure, frequently leading to the formation of a well-defined separation between deformed and undeformed regions. When integrated into a computational materials engineering framework, our approach could help optimize material design for tribological and other deformation problems. Graphic Abstract .


Sign in / Sign up

Export Citation Format

Share Document