scholarly journals Effect of Tilt Angle on the Performance and Electrical Parameters of a PV Module: Comparative Indoor and Outdoor Experimental Investigation

Author(s):  
M.A.A. Mamun ◽  
M.M. Islam ◽  
M. Hasanuzzaman ◽  
Jeyraj Selvaraj
2021 ◽  
Vol 230 ◽  
pp. 111219
Author(s):  
Alae Azouzoute ◽  
Charaf Hajjaj ◽  
Houssain Zitouni ◽  
Massaab El Ydrissi ◽  
Oumaima Mertah ◽  
...  

2020 ◽  
pp. 90-102
Author(s):  
Trina Som ◽  
A. Sharma ◽  
D. Thakur

In the present study, performance analyses of a solar module are made through the optimal variation of solar tilt angle, pertaining to the maximum generation of solar energy. The work has been carried out for a particular location at Tripura, in India, considering three different cases on an annual basis. An intelligent behavioural based algorithm, known as artificial bee algorithm (ABC), has been implemented for finding the optimal orientation of solar angle in analysing the performance. The result shows marginal differences are obtained in producing yearly maximum solar energy for different orientations of the PV module. It has been observed that the maximum average solar energy is obtained for the case where continuous adjustment is made by rotating the plane about the horizontal east-west axis within 20° to 30° tilt angle. The computed maximum and minimum of the monthly average efficiency is 10.9% and 8.7%, respectively. Further, a comparative study has been performed in generating average solar energy through optimal tilt angle by the implementation of Perturb & Observe method (P&O). The monthly average solar power computed by P&O method resulted better in a range of 2% to 15% in comparison to that obtained by ABC. While on the other hand, the efficiency computed by ABC algorithm was 15% to 19% better than that evaluated by P&O method for all the cases studied in the present work.


Author(s):  
Sivaraman P. ◽  
Sharmeela C.

A solar micro inverter is a small-size inverter designed for single solar PV module instead of group of solar PV modules. Each module is equipped with a micro inverter to convert the DC electricity into AC electricity and the micro inverter is placed/installed below the module. The advantages of micro inverters are: reduced effect of shading losses, module degradation and soiling losses, enabled module independence, different rating of micro inverter can be connected in parallel to achieve the desired capacity, additional modules can be included at time which allows the good scalability, string design and sizing are avoided, failure of any micro inverter does not affect the overall power generation, individual MPPT controller for each module increases the power generation, any orientation and tilt angle allows higher design flexibility, lower DC voltage increasing the safety, easy to design, handle and install, requires less maintenance, draws attention of design engineers, contractors, etc.


2019 ◽  
Vol 11 (22) ◽  
pp. 6234 ◽  
Author(s):  
Hyeonwook Park ◽  
Sungho Chang ◽  
Sanghwan Park ◽  
Woo Kyoung Kim

The outdoor performance of n-type bifacial Si photovoltaic (PV) modules and string systems was evaluated for two different albedo (ground reflection) conditions, i.e., 21% and 79%. Both monofacial and bifacial silicon PV modules were prepared using n-type bifacial Si passivated emitter rear totally diffused cells with multi-wire busbar incorporated with a white and transparent back-sheet, respectively. In the first set of tests, the power production of the bifacial PV string system was compared with the monofacial PV string system installed on a grey concrete floor with an albedo of ~21% for approximately one year (June 2016–May 2017). In the second test, the gain of the bifacial PV string system installed on the white membrane floor with an albedo of ~79% was evaluated for approximately ten months (November 2016–August 2017). During the second test, the power production by an equivalent monofacial module installed on a horizontal solar tracker was also monitored. The gain was estimated by comparing the energy yield of the bifacial PV module with that of the monofacial module. For the 1.5 kW PV string systems with a 30° tilt angle to the south and 21% ground albedo, the year-wide average bifacial gain was determined to be 10.5%. An increase of the ground albedo to 79% improved the bifacial gain to 33.3%. During the same period, the horizontal single-axis tracker yielded an energy gain of 15.8%.


2013 ◽  
Vol 448-453 ◽  
pp. 1428-1432 ◽  
Author(s):  
Warachit Phayom

For increasing energy conversion efficiency of PV module, this study was divided to two experiments. The first experiment was to investigate optimal tilt angle of PV module from 0-35° from horizontal plane in facing south for using in Udon thani Province and neighbouring in Thailand. The second experiment was to decrease PV module temperature and to determine appropriate cooling system by using water and small spray nozzles between front and back PV module. The results found, conversion efficiency was high during 15°-25° from horizontal plane for tilt angle in facing south, especially at 25° in whole year. Using thin film by spray nozzles at the front side was higher open circuit voltage and energy conversion efficiency than back side, with 6.06% of increasing open circuit voltage and 1.93% of increasing energy conversion efficiency when compared with no cooling system, due to can thoroughly distribute water on surface area and easily install.


2015 ◽  
Vol 78 ◽  
pp. 657-665 ◽  
Author(s):  
Ayodeji Abiola-Ogedengbe ◽  
Horia Hangan ◽  
Kamran Siddiqui

Sign in / Sign up

Export Citation Format

Share Document