Local heat transfer coefficients and pressure gradients for R-134a during flow boiling at temperatures between −9°C and +20°C

2009 ◽  
Vol 50 (7) ◽  
pp. 1714-1721 ◽  
Author(s):  
F. de Rossi ◽  
A.W. Mauro ◽  
A. Rosato
2008 ◽  
Vol 130 (6) ◽  
Author(s):  
A. Rabah ◽  
S. Kabelac

Local heat transfer coefficients for flow boiling of pure 1,1,1,2-tetrafluoroethane (R134a) and binary mixtures of propane (R290) and R134a were measured. The experimental setup employed a vapor heated plain horizontal tube (di=10mm, do=12mm, L=500mm). The measurements covered a wide range of saturation temperatures (233≤Ts≤278K), mass fluxes (100≤ṁ≤300kg∕m2s), qualities (0≤ẋ≤1), and concentrations (0≤z̃≤0.65). In the zeotropic region of R134a/R290 mixtures, the measured local heat transfer coefficient was found to show a maximum decrease by a factor of 2 relative to that for pure R134a. At the azeotropic point (65% R290), it was found to increase by a factor of 1.2. The measured local heat transfer coefficients for both R134a and R134a/R290 were compared with a number of correlations.


Author(s):  
Lihong Wang ◽  
Min Chen ◽  
Manfred Groll

Flow boiling heat transfer characteristics of R134a were experimentally investigated in a horizontal stainless steel mini-tube. The inner diameter of the test tube is 1.3 mm and the tube wall thickness is 0.1 mm. Local heat transfer coefficients are obtained over a range of vapor qualities up to 0.8, mass fluxes from 310 to 860 kg/m2s, heat fluxes from 21 to 50 kW/m2, and saturation pressures from 6.5 to 7.5 bar. The mass flux, heat flux, saturation pressure, and vapor quality dependences of heat transfer coefficients are demonstrated. Based on an available model in recent literature potential heat transfer mechanisms are also analyzed.


1997 ◽  
Vol 119 (1) ◽  
pp. 158-163 ◽  
Author(s):  
X. Liu

Condensing and evaporating heat transfer and pressure drop characteristics of an ozone friendly refrigerant HFC-134a and a HCFC refrigerant R-22, flowing inside a 9.5 mm (3/8 in) OD axially grooved tube were investigated experimentally to obtain the quasi-local heat transfer data and the correlations. When compared to R-22 at the same refrigerant flow rate, the condensing heat transfer coefficients for R-134a are 8 percent to 18 percent higher, and the pressure drop is 50 percent higher. The evaporating heat transfer coefficient with R-134a is about the same for mass velocity below 270 kg/m2-s and decreases above that velocity, relative to R-22. Performance characteristics are compared with data from literature reports.


2013 ◽  
Vol 34 (1) ◽  
pp. 5-16 ◽  
Author(s):  
Jozef Cernecky ◽  
Jan Koniar ◽  
Zuzana Brodnianska

Abstract The paper deals with a study of the effect of regulating elements on local values of heat transfer coefficients along shaped heat exchange surfaces with forced air convection. The use of combined methods of heat transfer intensification, i.e. a combination of regulating elements with appropriately shaped heat exchange areas seems to be highly effective. The study focused on the analysis of local values of heat transfer coefficients in indicated cuts, in distances expressed as a ratio x/s for 0; 0.33; 0.66 and 1. As can be seen from our findings, in given conditions the regulating elements can increase the values of local heat transfer coefficients along shaped heat exchange surfaces. An optical method of holographic interferometry was used for the experimental research into temperature fields in the vicinity of heat exchange surfaces. The obtained values correspond very well with those of local heat transfer coefficients αx, recorded in a CFD simulation.


Author(s):  
T. Vossel ◽  
N. Wolff ◽  
B. Pustal ◽  
A. Bührig-Polaczek ◽  
M. Ahmadein

AbstractAnticipating the processes and parameters involved for accomplishing a sound metal casting requires an in-depth understanding of the underlying behaviors characterizing a liquid melt solidifying inside its mold. Heat balance represents a major factor in describing the thermal conditions in a casting process and one of its main influences is the heat transfer between the casting and its surroundings. Local heat transfer coefficients describe how well heat can be transferred from one body or material to another. This paper will discuss the estimation of these coefficients in a gravity die casting process with local air gap formation and heat shrinkage induced contact pressure. Both an experimental evaluation and a numerical modeling for a solidification simulation will be performed as two means of investigating the local heat transfer coefficients and their local differences for regions with air gap formation or contact pressure when casting A356 (AlSi7Mg0.3).


2015 ◽  
Vol 19 (5) ◽  
pp. 1769-1789 ◽  
Author(s):  
Volodymyr Rifert ◽  
Volodymyr Sereda

Survey of the works on condensation inside smooth horizontal tubes published from 1955 to 2013 has been performed. Theoretical and experimental investigations, as well as more than 25 methods and correlations for heat transfer prediction are considered. It is shown that accuracy of this prediction depends on the accuracy of volumetric vapor content and pressure drop at the interphase. The necessity of new studies concerning both local heat transfer coefficients and film condensation along tube perimeter and length under annular, stratified and intermediate regimes of phase flow was substantiated. These characteristics being defined will allow determining more precisely the boundaries of the flow regimes and the methods of heat transfer prediction.


2009 ◽  
Vol 131 (7) ◽  
Author(s):  
Akhilesh P. Rallabandi ◽  
Huitao Yang ◽  
Je-Chin Han

Systematic experiments are conducted to measure heat transfer enhancement and pressure loss characteristics on a square channel (simulating a gas turbine blade cooling passage) with two opposite surfaces roughened by 45 deg parallel ribs. Copper plates fitted with a silicone heater and instrumented with thermocouples are used to measure regionally averaged local heat transfer coefficients. Reynolds numbers studied in the channel range from 30,000 to 400,000. The rib height (e) to hydraulic diameter (D) ratio ranges from 0.1 to 0.18. The rib spacing (p) to height ratio (p/e) ranges from 5 to 10. Results show higher heat transfer coefficients at smaller values of p/e and larger values of e/D, though at the cost of higher friction losses. Results also indicate that the thermal performance of the ribbed channel falls with increasing Reynolds numbers. Correlations predicting Nusselt number (Nu) and friction factor (f¯) as a function of p/e, e/D, and Re are developed. Also developed are correlations for R and G (friction and heat transfer roughness functions, respectively) as a function of the roughness Reynolds number (e+), p/e, and e/D.


Sign in / Sign up

Export Citation Format

Share Document