Simulation of an integrated gasification combined cycle with chemical-looping combustion and carbon dioxide sequestration

2015 ◽  
Vol 104 ◽  
pp. 170-179 ◽  
Author(s):  
Ángel Jiménez Álvaro ◽  
Ignacio López Paniagua ◽  
Celina González Fernández ◽  
Javier Rodríguez Martín ◽  
Rafael Nieto Carlier
Energy ◽  
2014 ◽  
Vol 76 ◽  
pp. 694-703 ◽  
Author(s):  
Ángel Jiménez Álvaro ◽  
Ignacio López Paniagua ◽  
Celina González Fernández ◽  
Rafael Nieto Carlier ◽  
Javier Rodríguez Martín

2010 ◽  
Vol 31 (3) ◽  
pp. 145-164 ◽  
Author(s):  
Janusz Kotowicz ◽  
Anna Skorek-osikowska ◽  
Katarzyna Janusz-szymańska

Membrane separation of carbon dioxide in the integrated gasification combined cycle systemsIntegrated gasification combined cycle systems (IGCC) are becoming more popular because of the characteristics, by which they are characterized, including low pollutants emissions, relatively high efficiency of electricity production and the ability to integrate the installation of carbon capture and storage (CCS). Currently, the most frequently used CO2capture technology in IGCC systems is based on the absorption process. This method causes a significant increase of the internal load and decreases the efficiency of the entire system. It is therefore necessary to look for new methods of carbon dioxide capture. The authors of the present paper propose the use of membrane separation. The paper reviews available membranes for use in IGCC systems, indicates, inter alia, possible places of their implementation in the system and the required operation parameters. Attention is drawn to the most important parameters of membranes (among other selectivity and permeability) influencing the cost and performance of the whole installation. Numerical model of a membrane was used, among others, to analyze the influence of the basic parameters of the selected membranes on the purity and recovery ratio of the obtained permeate, as well as to determine the energetic cost of the use of membranes for the CO2separation in IGCC systems. The calculations were made within the environment of the commercial package Aspen Plus. For the calculations both, membranes selective for carbon dioxide and membranes selective for hydrogen were used. Properly selected pressure before and after membrane module allowed for minimization of energy input on CCS installation assuring high purity and recovery ratio of separated gas.


Author(s):  
Peng Pei ◽  
Manohar Kulkarni

Integrated Gasification Combined Cycle (IGCC) is believed to be one of the most promising technologies to offer electricity and other de-carbon fuels with carbon capture requirement as well as to meet other emission regulations at a relatively low cost. As one of the most important parts, different gasification technologies can greatly influence the performance of the system. This paper develops a model to examine the feasibilities and advantages of using Ultra Superheated Steam (USS) gasification technology in IGCC power plant with carbon dioxide capture and storage (CCS). USS gasification technology converts coal into syngas by the endothermic steam reforming reaction, and the heat required for this reaction is provided by the sensible heat in the ultra superheated steam. A burner utilizes synthetic air (21% O2 and 79% H2O) to burn fuel gas to produce the USS flame for the gasification process. The syngas generated from USS gasification has a higher hydrogen fraction (more than 50%) then other gasification processes. This high ratio of hydrogen is considered to be desired for a “capture-ready” IGCC plant. After gas cleanup and water gas shift reaction, the syngas goes to the Selexol process for carbon dioxide removal. Detailed calculations and analysis are performed to test the performance of USS gasification technology used in IGCC generation systems. Final results such as net output, efficiency penalty for CO2 capture part, and net thermal efficiency are calculated and compared when three different coal types are used. This paper uses published data of USS gasification from previous research at the University of North Dakota. The model also tries to treat the IGCC with carbon dioxide capture system as a whole thermal system, the superheated steam used in USS gasification can be provided by extracting steam from the lower pressure turbine in the Rankine Cycle. The model will make reasonable use of various waste energies and steams for both mechanical and chemical processes to improve the performance of the plant, and incorporate CO2 capture system into the design concept of the power plant.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hashmi SAM ◽  

The main idea of this research paper is to provide an innovative way of capturing carbon dioxide emissions from a coal powered power plant. This research paper discusses the design and modeling of a carbon capturing membrane which is being used in an IGCC power plant to capture carbon dioxide from its exhaust gases. The modeling and design of the membrane is done using CFD software namely Ansys workbench. The design and modeling is done using two simulations, one describes the design and structure and the second one demonstrates the working mechanism of the membrane. This paper also briefly discusses IGCC which is environmentally benign compared to traditional pulverized coal-fired power plants, and economically feasible compared to the Natural Gas Combine Cycle (NGCC). IGCC power plant is more diverse and offers flexibility in fuel utility. This paper also incorporates a PFD of integrated gasification power plant with the carbon capturing membrane unit integrated in it. Index Terms: Integrated gasification combined cycle power plant, Carbon capture and storage, Gas permeating membrane, CFD based design of gas permeating membrane.


2021 ◽  
Author(s):  
Basavaraja Revappa Jayadevappa

Abstract Operation of power plants in carbon dioxide capture and non-capture modes and energy penalty or energy utilization in such operations are of great significance. This work reports on two gas fired pressurized chemical-looping combustion power plant lay-outs with two inbuilt modes of flue gas exit namely, with carbon dioxide capture mode and second mode is letting flue gas (consists carbon dioxide and water) without capturing carbon dioxide. In the non-CCS mode, higher thermal efficiencies of 54.06% and 52.63% efficiencies are obtained with natural gas and syngas. In carbon capture mode, a net thermal efficiency of 52.13% is obtained with natural gas and 48.78% with syngas. The operating pressure of air reactor is taken to be 13 bar for realistic operational considerations and that of fuel reactor is 11.5 bar. Two power plant lay-outs developed based combined cycle CLC mode for natural gas and syngas fuels. A single lay-out is developed for two fuels with possible retrofit for dual fuel operation. The CLC Power plants can be operated with two modes of flue gas exit options and these operational options makes them higher thermal efficient power plants.


Sign in / Sign up

Export Citation Format

Share Document