Effects of biobutanol and biobutanol–diesel blends on combustion and emission characteristics in a passenger car diesel engine with pilot injection strategies

2016 ◽  
Vol 111 ◽  
pp. 79-88 ◽  
Author(s):  
Hyuntae Yun ◽  
Kibong Choi ◽  
Chang Sik Lee
Fuel ◽  
2019 ◽  
Vol 236 ◽  
pp. 313-324 ◽  
Author(s):  
Haozhong Huang ◽  
Zhongju Li ◽  
Wenwen Teng ◽  
Chenzhong Zhou ◽  
Rong Huang ◽  
...  

2012 ◽  
Vol 472-475 ◽  
pp. 1528-1531
Author(s):  
Tie Min Xuan ◽  
Zhi Xia He ◽  
Zhao Chen Jiang ◽  
Yi Yan

Numerical Investigation of Effect Pilot Injection on Combustion Noise and Exhaust Emission of Diesel Engine The traditional mechanical fuel supply system has already been no way to satisfy the requirement of more stringent fuel consumption and emission legislation. For the past few years, it has been a hot topic to improve performance of diesel engine combustion and emission through optimizing the fuel injection strategy. All kinds of spray, combustion and emission models were studied and then the numerical models for the single-injection combustion of 1015 diesel engine were setup and validated through comparing with results from experimental data. With the above verified models, different injection strategies were further investigated to get the effect mechanism of pilot injection (PI) timing and quantity on combustion noise and exhaust emission.


2013 ◽  
Vol 768 ◽  
pp. 206-212 ◽  
Author(s):  
K. Senthil Kumar ◽  
R. Thundil Karuppa Raj

The objective of this study is to investigate the feasibility of two-stage injection on combustion and exhaust emission characteristics in diesel (main fuel) ethanol (pilot fuel) fuelled single cylinder diesel engine. The pressure crank angle and net heat release rate diagrams revealed that increase in the ethanol pilot quantity causes an increase in the ignition delay in the pilot combustion and hence the main combustion due to diesel fuel is slightly influenced by the ethanol pilot fuel. The increase in the pilot injection decreases the NOx considerably. The concentration of soot emissions also decreases with increase in pilot injection. The CO emissions increases with increase in pilot injection and a slight increase in HC emission is observed.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1300
Author(s):  
Jianbin Luo ◽  
Zhonghang Liu ◽  
Jie Wang ◽  
Heyang Chen ◽  
Zhiqing Zhang ◽  
...  

In this work, an effective numerical simulation method was developed and used to analyze the effects of natural gas mixing ratio and pilot-main injection, main-post injection, and pilot-main-post injection strategies on the combustion and emission characteristics of diesel engine fueled with dual fuel. Firstly, the one-dimensional calculation model and three-dimensional CFD model of the engine were established by AVL-BOOST and AVL-Fire, respectively. In addition, the simplified chemical kinetics mechanism was adopted, which could accurately calculate the combustion and emission characteristics of the engine. The results show that the cylinder pressure and heat release rate decrease with the increase of the natural gas mixing ratio and the NOx emission is reduced. When the NG mixing ratio is 50%, the NOx and CO emission are reduced by 47% and 45%, respectively. When the SODI3 is 24 °CA ATDC, the NOx emission is reduced by 29.6%. In addition, with suitable pilot-main injection and pilot-main-post injection strategies, the combustion in the cylinder can be improved and the trade-off relationship between NOx and soot can be relaxed. Thus, the proper main-post injection strategy can improve the combustion and emission characteristics, especially the reduction in the NOx and CO emissions.


Sign in / Sign up

Export Citation Format

Share Document