Definition and performance simulations of a novel solar-driven hybrid absorption-thermochemical refrigeration system

2018 ◽  
Vol 175 ◽  
pp. 298-312 ◽  
Author(s):  
Jaume Fitó ◽  
Alberto Coronas ◽  
Sylvain Mauran ◽  
Nathalie Mazet ◽  
Driss Stitou
Author(s):  
Raquel Garde ◽  
Sindia Casado ◽  
Fernando Jimenez ◽  
Gabriel Garcia-Naveda ◽  
Monica Aguado

Benchmark refrigeration systems in the road transportation sector are powered by diesel, having operation costs of up to 6,000 €/y with the consequent increase of the goods cost. This chapter presents an alternative refrigeration system based on fuel cells (FC) and hydrogen as fuel, with higher efficiency, reduced costs and independent of diesel price fluctuations. Examples of the energy load profiles impact on the FC sizing, H2 consumption and system autonomy are presented as well as a description of the FC model and performance simulation results. The economical feasibility of this new refrigeration system linked to renewable energies is also analyzed and an economical assessment for different scenarios is presented.


Nano Hybrids ◽  
2015 ◽  
Vol 9 ◽  
pp. 33-43 ◽  
Author(s):  
A. Manoj Babu ◽  
S. Nallusamy ◽  
K. Rajan

This paper investigates the reliability and performance of a refrigeration system using nanolubricant with 1, 1, 1, 2-Tetrafluoroethane (HFC-134a) refrigerant. Mineral Oil (MO) is mixed with nanoparticles such as Titanium Dioxide (TiO2) and Aluminium Oxide (Al2O3). These mixtures were used as the lubricant instead of Polyolester (POE) oil in the HFC-134a refrigeration system as HFC-134a does not compatible with raw mineral oil. An investigation was done on compatibility of mineral oil and nanoparticles mixture at 0.1 and 0.2 grams / litre with HFC-134a refrigerant. To carry out this investigation, an experimental setup was designed and fabricated in the lab. The refrigeration system performance with the nanolubricant was investigated by using energy consumption test. The results indicate that HFC-134a and mineral oil with above mentioned nanoparticles works normally and safely in the refrigeration system. The refrigeration system performance was better than the HFC-134a and POE oil system. Thus nanolubricant (Mixture of Mineral Oil (MO) and nanoParticles) can be used in refrigeration system to considerably reduce energy consumption and better Coefficient of Performance (COP).


2013 ◽  
Vol 21 (03) ◽  
pp. 1350016 ◽  
Author(s):  
HADI GANJEHSARABI ◽  
IBRAHIM DINCER ◽  
ALI GUNGOR

In the present study, a thermodynamic model is proposed to analyze and assess the performance, through energy and exergy, of a cascade active magnetic regenerative (AMR) refrigerator operation a regenerative Brayton cycle. This cascade refrigeration system works with Gd x Tb 1–x alloys as magnetic materials where the composition of the alloy varies for different stages. In this model, the heat transfer fluid considered is a water– glycol mixture (50% by weight). The refrigeration capacity, total power consumption, coefficients of performance (COP), exergy efficiency and exergy destruction rate of a cascade AMR refrigeration (AMRR) system are determined. To understand the system performance more comprehensively, a parametric study is performed to investigate the effects of several important design parameters on COP and exergy efficiency of the system.


2013 ◽  
Vol 2 (2) ◽  
pp. 117-124
Author(s):  
K Kamsuk ◽  
D Damrongsak ◽  
N Tippayawong

A compact, stand-alone, refrigeration module powered by a small biodiesel engine for vaccine storage in rural use was proposed. The engine was of single cylinder, four-stroke, direct injection with displacement of 0.296 cm3 and compression ratio of 20:1. The refrigeration system was modified from an automotive vapor compression system. The system performance was analytically investigated. From the simulation, it was found to have acceptable operation over a range of speeds and loads. Performance of the system in terms of fuel consumption and torque tended to decrease with an increase in engine speed. The modular system was able to operate at cooling loads above 4.6 kW, with proper speed ratio between the engine and the compressor. Overall, primary energy ratio of the refrigeration was found to be maximum at 0.54.


Author(s):  
B. S. Bibin ◽  
Edison Gundabattini

The creation of new age refrigerants might be the answer to the issue of an Earth-wide rise in temperature. Hence, while choosing new refrigerants a careful process is required. The general effect of any refrigerant substance on global warming, energy efficiency, ozone depletion, cost-effectiveness, chemical stability, and safety ought to be assessed. This paper sums up the experimental and numerical investigations directed with the globally accepted R1234yf refrigerant. The paper’s principal points are to assess the capability of the hydro-fluoro-olefin (HFO) refrigerant mainly R1234yf utilized in the refrigeration system (vapor compression systems, domestic refrigeration system) and to explore its utilization as an eco-friendly refrigerant. In the vapor compression refrigeration system, the cooling capacity and coefficient of performance of R1234yf are found to be less, 9% and 11%, respectively compared to that of R134a. But the power consumption of the system with R1234yf increased between 1.6% and 6.7% when compared to R134a. This paper likewise assists with recognizing the gap in the past research works and explores the possibilities for additional works.


Sign in / Sign up

Export Citation Format

Share Document