Investigation of diesel engine performance and exhaust emissions of microalgae fuel components in a turbocharged diesel engine

2019 ◽  
Vol 186 ◽  
pp. 220-228 ◽  
Author(s):  
Farhad M. Hossain ◽  
Md Nurun Nabi ◽  
Richard J. Brown
Author(s):  
F. Maroteaux ◽  
G. Descombes ◽  
F. Sauton

Abstract This research investigates engine performance and the potential of reducing exhaust emissions by using Dimethyl Ether (DME) which is an alternative fuel for diesel engines. The objective of this study it to evaluate (on the bed test) the performance and emissions reduction potential of an engine running with DME. A 4 cylinder passenger car HSDI Common Rail turbocharged diesel engine without specific modifications was used. The results obtained on this engine running with DME using diesel fuel as reference are encouraging. In the next steps of this study the injection rate will be adapted to DME operation and to the geometric and thermodynamic conditions of the combustion reaction. A study of the combustion reaction is also necessary in order to optimize the turbocharging system to exclusive DME operation.


Transport ◽  
2014 ◽  
Vol 29 (4) ◽  
pp. 440-448 ◽  
Author(s):  
Tomas Mickevičius ◽  
Stasys Slavinskas ◽  
Slawomir Wierzbicki ◽  
Kamil Duda

This paper presents a comparative analysis of the diesel engine performance and emission characteristics, when operating on diesel fuel and various diesel-biodiesel (B10, B20, B40, B60) blends, at various loads and engine speeds. The experimental tests were performed on a four-stroke, four-cylinder, direct injection, naturally aspirated, 60 kW diesel engine D-243. The in-cylinder pressure data was analysed to determine the ignition delay, the Heat Release Rate (HRR), maximum in-cylinder pressure and maximum pressure gradients. The influence of diesel-biodiesel blends on the Brake Specific Fuel Consumption (bsfc) and exhaust emissions was also investigated. The bench test results showed that when the engine running on blends B60 at full engine load and rated speed, the autoignition delay was 13.5% longer, in comparison with mineral diesel. Maximum cylinder pressure decreased about 1–2% when the amount of Rapeseed Methyl Ester (RME) expanded in the diesel fuel when operating at full load and 1400 min–1 speed. At rated mode, the minimum bsfc increased, when operating on biofuel blends compared to mineral diesel. The maximum brake thermal efficiency sustained at the levels from 0.3% to 6.5% lower in comparison with mineral diesel operating at full (100%) load. When the engine was running at maximum torque mode using diesel – RME fuel blends B10, B20, B40 and B60 the total emissions of nitrogen oxides decreased. At full and moderate load, the emission of carbon monoxide significantly raised as the amount of RME in fuel increased.


2017 ◽  
Vol 42 (28) ◽  
pp. 17993-18004 ◽  
Author(s):  
Abdullah Adam ◽  
Nur Atiqah Ramlan ◽  
Nur Fauziah Jaharudin ◽  
Herzwan Hamzah ◽  
Mohd Fahmi Othman ◽  
...  

Author(s):  
Alok A. Joshi ◽  
Scott James ◽  
Peter Meckl ◽  
Galen King ◽  
Kristofer Jennings

Degradation in the cooling effectiveness of a charge-air cooler (CAC) in a medium-duty turbocharged diesel engine has significant impact on engine performance. This degradation lowers the boost pressure and raises the intake manifold temperature. As a result, the engine provides lower horsepower and higher hydrocarbon levels than the rated values. The objective of this research is to monitor the health of the charge-air cooler by analyzing the intake manifold temperature signal. Experiments were performed on a Cummins ISB series turbocharged diesel engine, a 6-cylinder inline configuration with a 5.9 l displacement volume. Air flowing over the cooler was blocked by varying amounts, while various engine temperatures and pressures were monitored at different torque-speed conditions. Similarly, data were acquired without the introduction of any fault in the engine. For the construction of the manifold temperature trajectory vector, average mutual information estimates and a global false nearest neighbor analysis were used to find the optimal time parameter and embedding dimensions, respectively. The prediction of the healthy temperature vector was done by local linear regression using torque, speed, and their interaction as exogenous variables. Analysis of residuals generated by comparing the predicted healthy temperature vector and the observed temperature vector was successful in detecting the degradation of the charge-air cooler. This degradation was quantified by using box plots and probability density functions of residuals generated by comparing intake manifold temperature of healthy and faulty charge-air coolers. The general applicability of the model was demonstrated by successfully diagnosing a fault in the exhaust gas recirculation cooler of a different engine.


Sign in / Sign up

Export Citation Format

Share Document