Energy saving in wastewater treatment plants: A methodology based on common key performance indicators for the evaluation of plant energy performance, classification and benchmarking

2020 ◽  
Vol 220 ◽  
pp. 113067 ◽  
Author(s):  
G. Sabia ◽  
L. Petta ◽  
F. Avolio ◽  
E. Caporossi
2002 ◽  
Vol 2 (4) ◽  
pp. 163-171
Author(s):  
P. Ingildsen ◽  
P. Lant ◽  
G. Olsson

Benchmarking is an effective tool to compare the performance of full-scale wastewater treatment plant operation. In this study, 29 wastewater treatment plants from eight countries were surveyed with the aim of developing some key performance indicators, which may be used for benchmarking purposes. The level of utilisation of instrumentation, control and automation (ICA) has also been measured. The study of ICA utilisation revealed that on average only 23% of all sensors are used for online control. For most parameters, ICA is not the single dominant factor determining performance, although it is the factor that has the highest potential to improve performance. Eighty percent of the participating plants had implemented new control during the last five years leading to improvements in nitrogen and phosphorous removal, energy efficiency and ease of operation. The survey has quantified how “non-standardised” wastewater treatment plant operational practice is. Some simple key performance indicators are derived that relate the level of removal of ammonium, total nitrogen, phosphorous and suspended solids to the resources needed for their removal, i.e. volume, energy, organic matter and precipitation chemicals. Several indicators are suggested for each substance. The indicators show a great difference from the best to the poorest performance indicating that improvement potentials exist at many plants.


2021 ◽  
Vol 13 (16) ◽  
pp. 8789
Author(s):  
Giovanni Bianco ◽  
Barbara Bonvini ◽  
Stefano Bracco ◽  
Federico Delfino ◽  
Paola Laiolo ◽  
...  

As reported in the “Clean energy for all Europeans package” set by the EU, a sustainable transition from fossil fuels towards cleaner energy is necessary to improve the quality of life of citizens and the livability in cities. The exploitation of renewable sources, the improvement of energy performance in buildings and the need for cutting-edge national energy and climate plans represent important and urgent topics to be faced in order to implement the sustainability concept in urban areas. In addition, the spread of polygeneration microgrids and the recent development of energy communities enable a massive installation of renewable power plants, high-performance small-size cogeneration units, and electrical storage systems; moreover, properly designed local energy production systems make it possible to optimize the exploitation of green energy sources and reduce both energy supply costs and emissions. In the present paper, a set of key performance indicators is introduced in order to evaluate and compare different energy communities both from a technical and environmental point of view. The proposed methodology was used in order to assess and compare two sites characterized by the presence of sustainable energy infrastructures: the Savona Campus of the University of Genoa in Italy, where a polygeneration microgrid has been in operation since 2014 and new technologies will be installed in the near future, and the SPEED2030 District, an urban area near the Campus where renewable energy power plants (solar and wind), cogeneration units fed by hydrogen and storage systems are planned to be installed.


2019 ◽  
Vol 887 ◽  
pp. 164-171
Author(s):  
Marija Marković ◽  
Ulrich Pont ◽  
Ardeshir Mahdavi

Energy performance calculations are stipulated by law in most European countries. Thereby, different calculation schemes have been developed in the past years in different countries. The physical processes in buildings were simplified in terms of normative calculation routines in most of these schemes. A major idea behind these simplifications was to enable different stakeholders (practitioners, engineers, and architects) to issue energy certificates without being simulation experts. Moreover, the simplifications needed to be described thoroughly in corresponding guidelines to ensure and facilitate the comparability of the energy performance of different buildings. However, neither of these objectives can be considered to be fully met. Regarding the former, the normative calculation procedures increased in complexity in the past years, so that the issuing of energy certificates requires not only the stakeholder’s expertise but also a comprehensive knowledge of the standards that form the calculation method. Regarding the latter, recent research efforts revealed that many guidelines do not fully cover every aspect of the calculation procedures and the assumptions regarding required input data. Thus, the comparability of energy certificates has to be strongly questioned, as a number of relevant calculation parameters are dependent on the interpretation of the corresponding issuer.Given this background, alternative approaches to building performance evaluation would be of interest. Previous approaches by different researchers suggested so called prescriptive indicators, which can be derived by basic building data (for instance, geometry and thermal quality of the building envelope components). This contribution is based on this concept. In the framework of a master thesis, a number of prescriptive indicators were considered. These indicators were derived for a set of sample buildings. In a parallel effort, energy certificates (encompassing Key Performance Indicators KPIs) were calculated for the sample buildings. It is clear that the prescriptive indicators cannot act as a 1:1 replacement for KPIs in terms of a numeric value. However, their usefulness can be expressed by the relation of the prescriptive indicator and the corresponding KPIs of a building. Thus, the results of the described calculation efforts were ranked. Subsequently, the lists of buildings ranked by the different indicators were compared in order to identify prescriptive indicators, which result in the same or at least similar ranking as the normative key performance indicators. Within this contribution, the suggested prescriptive indicators, the sample buildings, and the results of the analysis are presented and discussed.


2016 ◽  
Vol 74 (12) ◽  
pp. 2935-2945 ◽  
Author(s):  
C. Silva ◽  
J. Saldanha Matos ◽  
M. J. Rosa

High quality services of wastewater treatment require a continuous assessment and improvement of the technical, environmental and economic performance. This paper demonstrates a comprehensive approach for benchmarking wastewater treatment plants (WWTPs), using performance indicators (PIs) and indices (PXs), in a ‘plan-do-check-act’ cycle routine driven by objectives. The performance objectives herein illustrated were to diagnose the effectiveness and energy performance of an oxidation ditch WWTP. The PI and PX results demonstrated an effective and reliable oxidation ditch (good–excellent performance), and a non-reliable UV disinfection (unsatisfactory–excellent performance) related with influent transmittance and total suspended solids. The energy performance increased with the treated wastewater volume and was unsatisfactory below 50% of plant capacity utilization. The oxidation ditch aeration performed unsatisfactorily and represented 38% of the plant energy consumption. The results allowed diagnosing opportunities for improving the energy and economic performance considering the influent flows, temperature and concentrations, and for levering the WWTP performance to acceptable–good effectiveness, reliability and energy efficiency. Regarding the plant reliability for fecal coliforms, improvement of UV lamp maintenance and optimization of the UV dose applied and microscreen recommissioning were suggested.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 976 ◽  
Author(s):  
Jinqiu Li ◽  
Qingqin Wang ◽  
Hao Zhou

Released green building evaluation standards for operation stage include a huge number of indicators, which are very comprehensive and systematic. However, the indicators of these standards are very complicated and a large amount of time and manpower are consumed for their evaluation. To evaluate the operational performance of green buildings more practically and efficiently, some studies collect the operational data for part of the indicators (mainly focusing on building energy performance, indoor environmental quality or occupant satisfaction), which are too rough to evaluate the performance of green building. This paper proposed a total of 27 key performance indicators (KPIs) for green building operations monitoring. The number of proposed indicators is much fewer than the evaluation standards, as well as suitable for long-term monitoring, which can dramatically reduce evaluation time and cost. On the other hand, the indicators involving Outdoor environmental quality, Indoor environmental quality, HVAC system, P&D system, Renewable energy system, Total resource consumption and User behavior, which are more comprehensive and systematic than the conventional monitoring studies for operational performance of green building. Firstly, an indicators library for operations monitoring of green building was established based on relevant standards and literature review in this field. Secondly, “SMART” principle and Delphi method were adopted to select the key performance indicators for green building operations monitoring. Different background experts regarding green building industry were chosen to screen the most relevant, accessible and measurable indicators. Subsequently, two projects in China were selected for case study of key performance indicators proposed in this paper for green building operations monitoring to validate the feasibility and advancement.


2019 ◽  
Vol 9 (21) ◽  
pp. 4501 ◽  
Author(s):  
Yongteng Sun ◽  
Ming Lu ◽  
Yongjun Sun ◽  
Zuguo Chen ◽  
Hao Duan ◽  
...  

High energy consumption is an important issue affecting the operation and development of wastewater treatment plants (WWTPs). This paper seeks energy-saving opportunities from three aspects: energy application, process optimization, and performance evaluation. Moreover, effective energy-saving can be achieved from the perspective of energy supply and recovery by using green energy technologies, including wastewater and sludge energy recovery technologies. System optimization and control is used to reduce unnecessary energy consumption in operation. Reasonable indexes and methods can help researchers evaluate the application value of energy-saving technology. Some demonstration WWTPs even can achieve energy self-sufficiency by using these energy conservation technologies. Besides, this paper introduces the challenges faced by the wastewater treatment industry and some emerging energy-saving technologies. The work can give engineers some suggestions about reducing energy consumption from comprehensive perspectives.


2018 ◽  
Vol 77 (9) ◽  
pp. 2242-2252 ◽  
Author(s):  
M. Vaccari ◽  
P. Foladori ◽  
S. Nembrini ◽  
F. Vitali

Abstract One of the largest surveys in Europe about energy consumption in Italian wastewater treatment plants (WWTPs) is presented, based on 241 WWTPs and a total population equivalent (PE) of more than 9,000,000 PE. The study contributes towards standardised resilient data and benchmarking and to identify potentials for energy savings. In the energy benchmark, three indicators were used: specific energy consumption expressed per population equivalents (kWh PE−1 year−1), per cubic meter (kWh/m3), and per unit of chemical oxygen demand (COD) removed (kWh/kgCOD). The indicator kWh/m3, even though widely applied, resulted in a biased benchmark, because highly influenced by stormwater and infiltrations. Plants with combined networks (often used in Europe) showed an apparent better energy performance. Conversely, the indicator kWh PE−1 year−1 resulted in a more meaningful definition of a benchmark. High energy efficiency was associated with: (i) large capacity of the plant, (ii) higher COD concentration in wastewater, (iii) separate sewer systems, (iv) capacity utilisation over 80%, and (v) high organic loads, but without overloading. The 25th percentile was proposed as a benchmark for four size classes: 23 kWh PE−1 y−1 for large plants > 100,000 PE; 42 kWh PE−1 y−1 for capacity 10,000 < PE < 100,000, 48 kWh PE−1 y−1 for capacity 2,000 < PE < 10,000 and 76 kWh PE−1 y−1 for small plants < 2,000 PE.


2012 ◽  
Vol 65 (7) ◽  
pp. 1304-1310 ◽  
Author(s):  
P. Balmér ◽  
D. Hellström

The Swedish Water & Wastewater Association has operated a web-based system, VASS, for the collection and compilation of key data from the Swedish water utilities since 2003. The VASS system will now be expanded to include data on operation of individual wastewater treatment plants (WWTP). The objective is to provide performance indicators (PIs) for performance and economy and the use of resources such as energy, chemicals and manpower. A set of PIs has been developed that also includes explanatory factors to compensate for differences in the condition of operation between plants. This paper discusses the data required for the calculation of PI but also for explanatory factors, quality checks and for plant operation context. The discussion is based on the experiences from a test round with the participation of 24 WWTP.


Sign in / Sign up

Export Citation Format

Share Document