scholarly journals Influence of spray-glow plug configuration on cold start combustion for high-speed direct injection diesel engines

Energy ◽  
2011 ◽  
Vol 36 (9) ◽  
pp. 5486-5496 ◽  
Author(s):  
J.V. Pastor ◽  
V. Bermúdez ◽  
J.M. García-Oliver ◽  
J.G. Ramírez-Hernández
Fuel ◽  
2011 ◽  
Vol 90 (4) ◽  
pp. 1556-1566 ◽  
Author(s):  
J.V. Pastor ◽  
J.M. García-Oliver ◽  
J.M. Pastor ◽  
J.G. Ramírez-Hernández

Fuel ◽  
2011 ◽  
Vol 90 (11) ◽  
pp. 3359-3368 ◽  
Author(s):  
J.M. Desantes ◽  
J.M. García-Oliver ◽  
J.M. Pastor ◽  
J.G. Ramírez-Hernández

Author(s):  
Stewart Xu Cheng ◽  
James S. Wallace

Glow plugs are a possible ignition source for direct injected natural gas engines. This ignition assistance application is much different than the cold start assist function for which most glow plugs have been designed. In the cold start application, the glow plug is simply heating the air in the cylinder. In the cycle-by-cycle ignition assist application, the glow plug needs to achieve high surface temperatures at specific times in the engine cycle to provide a localized source of ignition. Whereas a simple lumped heat capacitance model is a satisfactory representation of the glow plug for the air heating situation, a much more complex situation exists for hot surface ignition. Simple measurements and theoretical analysis show that the thickness of the heat penetration layer is small within the time scale of the ignition preparation period (1–2 ms). The experiments and analysis were used to develop a discretized representation of the glow plug domain. A simplified heat transfer model, incorporating both convection and radiation losses, was developed for the discretized representation to compute heat transfer to and from the surrounding gas. A scheme for coupling the glow plug model to the surrounding gas computational domain in the KIVA-3V engine simulation code was also developed. The glow plug model successfully simulates the natural gas ignition process for a direct-injection natural gas engine. As well, it can provide detailed information on the local glow plug surface temperature distribution, which can aid in the design of more reliable glow plugs.


1965 ◽  
Author(s):  
Hans List ◽  
S. Pachernegg ◽  
H. L. Wittek

Author(s):  
Lurun Zhong ◽  
Naeim A. Henein ◽  
Walter Bryzik

Advance high speed direct injection diesel engines apply high injection pressures, exhaust gas recirculation (EGR), injection timing and swirl ratios to control the combustion process in order to meet the strict emission standards. All these parameters affect, in different ways, the ignition delay (ID) which has an impact on premixed, mixing controlled and diffusion controlled combustion fractions and the resulting engine-out emissions. In this study, the authors derive a new correlation to predict the ID under the different operating conditions in advanced diesel engines. The model results are validated by experimental data in a single-cylinder, direct injection diesel engine equipped with a common rail injection system at different speeds, loads, EGR ratios and swirl ratios. Also, the model is used to predict the performance of two other diesel engines under cold starting conditions.


Author(s):  
C Arcoumanis ◽  
L N Barbaris ◽  
R I Crane ◽  
P Wisby

A cyclone-based filtration system has been developed and its potential for reduction of exhaust particulates in high-speed direct injection diesel engines is evaluated; the filtration efficiency of the four cyclones has been enhanced by means of particulate agglomeration induced by cooling in a heat exchanger. With this system installed in the exhaust pipe of a 2.5 litre direct injection engine, tests covering a wide range of speed, load and exhaust gas recirculation (EGR) fraction resulted in reductions of up to 77 per cent in emitted particulate mass flowrate. The dependence of the system's performance on engine operating conditions, EGR configuration and cyclone geometry is presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document