Analysis of influencing factors of heat extraction from enhanced geothermal systems considering water losses

Energy ◽  
2016 ◽  
Vol 115 ◽  
pp. 274-288 ◽  
Author(s):  
Wen-Long Cheng ◽  
Chang-Long Wang ◽  
Yong-Le Nian ◽  
Bing-Bing Han ◽  
Jian Liu
Energy ◽  
2018 ◽  
Vol 142 ◽  
pp. 157-167 ◽  
Author(s):  
Chang-Long Wang ◽  
Wen-Long Cheng ◽  
Yong-Le Nian ◽  
Lei Yang ◽  
Bing-Bing Han ◽  
...  

2017 ◽  
Vol 105 ◽  
pp. 232-247 ◽  
Author(s):  
Yidong Xia ◽  
Mitchell Plummer ◽  
Earl Mattson ◽  
Robert Podgorney ◽  
Ahmad Ghassemi

2021 ◽  
Vol 54 ◽  
pp. 229-240
Author(s):  
Dejian Zhou ◽  
Alexandru Tatomir ◽  
Martin Sauter

Abstract. Enhanced Geothermal Systems (EGS) are widely used in the development and application of geothermal energy production. They usually consist of two deep boreholes (well doublet) circulation systems, with hot water being abstracted, passed through a heat exchanger, and reinjected into the geothermal reservoir. Recently, simple analytical solutions have been proposed to estimate water pressure at the abstraction borehole. Nevertheless, these methods do not consider the influence of complex geometrical fracture patterns and the effects of the coupled thermal and mechanical processes. In this study, we implemented a coupled thermo-hydro-mechanical (THM) model to simulate the processes of heat extraction, reservoir deformation, and groundwater flow in the fractured rock reservoir. The THM model is validated with analytical solutions and existing published results. The results from the systems of single fracture zone and multi-fracture zones are investigated and compared. It shows that the growth of the number and spacing of fracture zones can effectively decrease the pore pressure difference between injection and abstraction wells; it also increases the production temperature at the abstraction, the service life-spans, and heat production rate of the geothermal reservoirs. Furthermore, the sensitivity analysis on the flow rate is also implemented. It is observed that a larger flow rate leads to a higher abstraction temperature and heat production rate at the end of the simulation, but the pressure difference may become lower.


Fluids ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 63
Author(s):  
Zuo ◽  
Weijermars

A simple, semi-analytical heat extraction model is presented for hydraulically fractured dry reservoirs containing two subparallel horizontal wells, connected by a horizontal fracture channel, using injected brine as the working fluid. Heat equations are used to quantify the heat conduction between fracture walls and circulating brine. The brine temperature profiles are calculated for different combinations of fracture widths, working fluid circulation rates, and initial fracture wall temperatures. The longevity of the geothermal heat extraction process is assessed for a range of working fluid injection rates. Importantly, dry geothermal reservoirs will not recharge heat by the geothermal flux on the time scale of any commercial heat extraction project. A production plan is proposed, with periodic brine circulation maintained in a diurnal schedule with 8 h active production alternating with 16 h of pump switched off. A quasi-steady state is achieved after both the brine temperature and rock temperature converge to a limit state allowing fracture-wall reheating by conduction from the rock interior in the diurnal production schedule. The results of this study could serve as a fast tool for assisting the planning phase of geothermal reservoir design as well as for operational monitoring and management.


2020 ◽  
Author(s):  
Dejian Zhou ◽  
Alexandru Tatomir ◽  
Martin Sauter

<p>Enhanced Geothermal Systems (EGS) are widely used in the development and application of geothermal energy. They usually consist of two parallel deep boreholes, where cold water is injected into one borehole and abstracted at the second one after being heated when passing through the fractured network system. Recently, simple analytical solutions have been proposed to estimate the water pressure at the output. Nevertheless, these methods do not take into account the influences of the coupled thermal and mechanical processes. In this research study we build a fully coupled Thermal – Hydro-mechanical model (THM model) to simulate the processes of heat extraction, deformation and water flow in the nearby fractured rock formations. The influences of single thermal – hydraulic and mechanical – hydraulic effects were compared with the fully coupled and decoupled results, showing that temperature influences mostly the water pressure in the second borehole, compared with temperature. The mechanical effect alone has little influences on the water pressure. A sensitive analysis was also conducted to study which parameters affect the simulation results the most. It was shown that the initial permeability and temperature are playing the main roles in this simulation.</p>


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1211 ◽  
Author(s):  
Dongdong Liu ◽  
Yanyong Xiang

Multiple fractures have been proposed for improving the heat extracted from an enhanced geothermal system (EGS). For calculating the production temperature of a multi-fracture EGS, previous analytical or semi-analytical methods have all been based on an infinite scale of fractures and one-dimensional conduction in the rock matrix. Here, a temporal semi-analytical method is presented in which finite-scale fractures and three-dimensional conduction in the rock matrix are both considered. Firstly, the developed model was validated by comparing it with the analytical solution, which only considers one-dimensional conduction in the rock matrix. Then, the temporal semi-analytical method was used to predict the production temperature in order to investigate the effects of fracture spacing and fracture number on the response of an EGS with a constant total injection rate. The results demonstrate that enlarging the spacing between fractures and increasing the number of fractures can both improve the heat extraction; however, the latter approach is much more effective than the former. In addition, the temporal semi-analytical method is applicable for optimizing the design of an EGS with multiple fractures located equidistantly or non-equidistantly.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Feng Pan ◽  
Brian J. McPherson ◽  
John Kaszuba

Recent studies suggest that using supercritical CO2 (scCO2) instead of water as a heat transmission fluid in Enhanced Geothermal Systems (EGS) may improve energy extraction. While CO2-fluid-rock interactions at “typical” temperatures and pressures of subsurface reservoirs are fairly well known, such understanding for the elevated conditions of EGS is relatively unresolved. Geochemical impacts of CO2 as a working fluid (“CO2-EGS”) compared to those for water as a working fluid (H2O-EGS) are needed. The primary objectives of this study are (1) constraining geochemical processes associated with CO2-fluid-rock interactions under the high pressures and temperatures of a typical CO2-EGS site and (2) comparing geochemical impacts of CO2-EGS to geochemical impacts of H2O-EGS. The St. John’s Dome CO2-EGS research site in Arizona was adopted as a case study. A 3D model of the site was developed. Net heat extraction and mass flow production rates for CO2-EGS were larger compared to H2O-EGS, suggesting that using scCO2 as a working fluid may enhance EGS heat extraction. More aqueous CO2 accumulates within upper- and lower-lying layers than in the injection/production layers, reducing pH values and leading to increased dissolution and precipitation of minerals in those upper and lower layers. Dissolution of oligoclase for water as a working fluid shows smaller magnitude in rates and different distributions in profile than those for scCO2 as a working fluid. It indicates that geochemical processes of scCO2-rock interaction have significant effects on mineral dissolution and precipitation in magnitudes and distributions.


Sign in / Sign up

Export Citation Format

Share Document