scholarly journals Deployment characterization of a floatable tidal energy converter on a tidal channel, Ria Formosa, Portugal

Energy ◽  
2018 ◽  
Vol 158 ◽  
pp. 89-104 ◽  
Author(s):  
A. Pacheco ◽  
E. Gorbeña ◽  
T.A. Plomaritis ◽  
E. Garel ◽  
J.M.S. Gonçalves ◽  
...  
2020 ◽  
Vol 100 ◽  
pp. 102222
Author(s):  
Martin Träsch ◽  
Astrid Déporte ◽  
Sylvain Delacroix ◽  
Grégory Germain ◽  
Benoit Gaurier ◽  
...  

2011 ◽  
Vol 8 (3) ◽  
pp. 130-140 ◽  
Author(s):  
Rita M. T. Ascenso

Abstract In the 80ies, in Southern Europe and in particular in Ria Formosa there was an episode of heavy mortality of the economically relevant clam Ruditapes (R.) decussatus associated with a debilitating disease (Perkinsosis) caused by Perkinsus olseni. This protozoan parasite was poorly known concerning its’ differential transcriptome in response to its host, R. decussatus. This laboratory available protozoan system was used to identify parasite genes related to host interaction. Beyond the application of molecular biology technologies and methodologies, only the help of Bioinformatics tools allowed to analyze the results of the study. The strategy started with SSH technique, allowing the identification of parasite up-regulated genes in response to its natural host, then a macroarray was constructed and hybridized to characterize the parasite genes expression when exposed to bivalves hemolymph from permissive host (R. decussatus), resistant host (R. philippinarum) and non permissive bivalve (Donax trunculus) that cohabit in the same or adjacent habitats in Southern Portugal. Genes and respective peptides full molecular characterization depended on several Bioinformatic tools application. Also a new Bioinformatic tool was developed.


Author(s):  
Joseph MacEnri ◽  
Matthew Reed ◽  
Torbjörn Thiringer

This paper presents the analysis of the study of the flicker emitted from the 1.2 MW tidal energy converter (TEC), SeaGen, against varying tidal parameters. This paper outlines the main elements of the TEC itself, the environment it is located in and the measurement set up. In this paper, the flicker emitted by the TEC is compared with the different tidal parameters, including flood and ebb tides, tidal speed, water depth and turbulence strength and intensity. Flicker emissions have been calculated from measured data in over 90 measurement (10 min) periods, and all of the tidal parameters vary significantly over that testing period. This allows for a detailed statistical and graphical analysis of the variation of flicker with the variation of the tidal parameters outlined above. It is found, with the exception of tidal speed, that there is no strong relationship between flicker emissions and any other tidal parameter. As SeaGen is an asymmetrical TEC with full blade pitching for flood and ebb generation, it was also found that the expected difference of flicker emissions owing to the effect of the submersed crossbeam was not significant. The TEC harmonic performance versus tidal speed is also presented.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5145
Author(s):  
Craig Hill ◽  
Vincent S. Neary ◽  
Michele Guala ◽  
Fotis Sotiropoulos

The mechanical power and wake flow field of a 1:40 scale model of the US Department of Energy’s Reference Model 1 (RM1) dual rotor tidal energy converter are characterized in an open-channel flume to evaluate power performance and wake flow recovery. The NACA-63(4)-24 hydrofoil profile in the original RM1 design is replaced with a NACA-4415 profile to minimize the Reynolds dependency of lift and drag characteristics at the test chord Reynolds number. Precise blade angular position and torque measurements were synchronized with three acoustic Doppler velocimeters (ADV) aligned with each rotor centerline and the midpoint between the rotor axes. Flow conditions for each case were controlled to maintain a hub height velocity, uhub= 1.04 ms−1, a flow Reynolds number, ReD= 4.4 × 105, and a blade chord length Reynolds number, Rec= 3.1 × 105. Performance was measured for a range of tip-speed ratios by varying rotor angular velocity. Peak power coefficients, CP= 0.48 (right rotor) and CP= 0.43 (left rotor), were observed at a tip speed ratio, λ= 5.1. Vertical velocity profiles collected in the wake of each rotor between 1 and 10 rotor diameters are used to estimate the turbulent flow recovery in the wake, as well as the interaction of the counter-rotating rotor wakes. The observed performance characteristics of the dual rotor configuration in the present study are found to be similar to those for single rotor investigations in other studies. Similarities between dual and single rotor far-wake characteristics are also observed.


2020 ◽  
Author(s):  
Rory O'Hara Murray ◽  
Matthew Lewis

<p>Scotland has ambitious decarbonisation and climate change objectives, such as generating 100% of gross annual electricity consumption from renewable sources by 2020. Tidal stream energy is a renewable and predictable source of energy that converts the kinetic energy within tidal currents, into electricity, using a hydrokinetic device such as a horizontal axis turbine. However, economically viable tidal stream development is currently confined to areas of exceptionally high current speeds, and this can severely limit the choice of area. If the speed threshold required for an economically viable tidal site can be lowered then the number of potential sites could increase dramatically.</p><p>It is well known that macro-algae (e.g. kelp) grow in perspective tidal energy sites, as they requiring similar water depths and current speeds. Furthermore, kelp is known to grow in dense patches, reaching from the sea-floor to the ocean surface, and can modify tidal current speeds. Indeed, observations have shown that “kelp forests” can locally reduce current speeds by a third (Jackson and Winant, 1983). This local reduction in current speed will cause an increase in speed elsewhere, in order to conserve mass. Therefore, we hypothesise that by adding a kelp forest in the vicinity of a tidal channel, the current speed and tidal stream resource could be increased sufficiently for the site to become economical.</p><p>A three dimensional finite volume hydrodynamic model has been used to model an idealised tidal channel. The drag imposed by kelp was theoretically calculated and represented in the model as a sub grid scale momentum sink. The changes to the current speed resulting from this bio-optimisation of the tidal channel were investigated and show that the current speed in the centre of the channel can be increased. Kelp were then added to a previously developed hydrodynamic model of the Pentland Firth and Orkney Waters to investigate how such bio-optimisation could influence an area currently being considered for substantial tidal stream development. The changes on both the areas of suitable tidal stream development and the power yield are investigated.</p><p><strong>Acknowledgements</strong></p><p>Matthew Lewis wishes to thank Aaron Owen and Ade Fewings at SuperComputingWales, and Fearghal O'Donncha at IBM-research Ireland for fruitful discussions, and the METRIC grant, EP/R034664/1.</p><p><strong>References</strong></p><p>Jackson, G. A. and Winant, C. D. (1983). Effect of a kelp forest on coastal currents. Continental Shelf Research, 2(1), pp.75-80.</p>


Sign in / Sign up

Export Citation Format

Share Document