scholarly journals Performance and Wake Characterization of a Model Hydrokinetic Turbine: The Reference Model 1 (RM1) Dual Rotor Tidal Energy Converter

Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5145
Author(s):  
Craig Hill ◽  
Vincent S. Neary ◽  
Michele Guala ◽  
Fotis Sotiropoulos

The mechanical power and wake flow field of a 1:40 scale model of the US Department of Energy’s Reference Model 1 (RM1) dual rotor tidal energy converter are characterized in an open-channel flume to evaluate power performance and wake flow recovery. The NACA-63(4)-24 hydrofoil profile in the original RM1 design is replaced with a NACA-4415 profile to minimize the Reynolds dependency of lift and drag characteristics at the test chord Reynolds number. Precise blade angular position and torque measurements were synchronized with three acoustic Doppler velocimeters (ADV) aligned with each rotor centerline and the midpoint between the rotor axes. Flow conditions for each case were controlled to maintain a hub height velocity, uhub= 1.04 ms−1, a flow Reynolds number, ReD= 4.4 × 105, and a blade chord length Reynolds number, Rec= 3.1 × 105. Performance was measured for a range of tip-speed ratios by varying rotor angular velocity. Peak power coefficients, CP= 0.48 (right rotor) and CP= 0.43 (left rotor), were observed at a tip speed ratio, λ= 5.1. Vertical velocity profiles collected in the wake of each rotor between 1 and 10 rotor diameters are used to estimate the turbulent flow recovery in the wake, as well as the interaction of the counter-rotating rotor wakes. The observed performance characteristics of the dual rotor configuration in the present study are found to be similar to those for single rotor investigations in other studies. Similarities between dual and single rotor far-wake characteristics are also observed.

Author(s):  
Manh Hung Nguyen ◽  
Haechang Jeong ◽  
Changjo Yang

Renewal energy technologies are increasingly popular to ensure future energy sustainability and to balance environmental issues. The growing interest in exploring tidal energy has compelling reasons such as security and diversity of supply, intermittent but predictable and limited social and environmental impacts. The energy available in tidal currents or other artificial water channels is being considered as viable source of renewable power. Hydrokinetic conversion systems, albeit mostly at its early stage of development, may appear suitable in harnessing energy from such renewable resources. A concept of tidal energy converter (TEC) which is based on shape of the conventional water wheels, is introduced in this study. Basically, this turbine has several special features that are potentially more advantageous than the conventional tidal turbines, such as propeller type tidal turbines. The research aims to study the possibility of twelve-blade turbine in extracting the hydrokinetic energy of tidal current and converting it into electricity, and evaluate the performance of the turbine at different given arrangements of blades (single and double rows) using Computational Fluid Dynamics (CFD). In all cases of tip-speed ratio (TSR), the twelve-blade double-row type obtains higher power efficiency, especially about 20% power coefficient at TSR = 0.75, in comparison with 13% power coefficient of the single-row one. Furthermore, by changing the arrangement of rotating blades, the torque’s absorption from the rotor shaft of twelve-blade double-row turbine is more uniform due to the less interrupted and fluctuated generation of force for a period of time (one revolution of the rotor).


2015 ◽  
Vol 9 (1) ◽  
pp. 1017-1024 ◽  
Author(s):  
Mei Yi ◽  
Qu Jianjun

This paper studies the relationship between unsteady flow features and instantaneous torque and power performance of straight bladed vertical axis wind turbine at variable tip speed ratios. The rotor unsteady flow field simulation was carried out by using computational fluid dynamics method. The flow physics and the principle of changing flow field acting on torque performance and power performance have been analyzed where the rotating rotor was the major concern. The results show that the flow feature alters from periodical blade dynamic stall vortexes generation, development and shedding at low tip speed ratio to cyclical formation, evolution and diffusion of blade wake flow with the rising tip speed ratio. Both vortex shedding around the blade and interaction of blade wakes degrade the rotor aerodynamic performance. It is suggested that, to absorb maximum wind energy, delay the blade vortex shedding and reduce the range of blade wake, evolution and diffusion should be included in the rotor aerodynamic design.


2020 ◽  
Vol 8 (9) ◽  
pp. 646 ◽  
Author(s):  
Mathew B. R. Topper ◽  
Sterling S. Olson ◽  
Jesse D. Roberts

Hydrokinetic tidal energy converter (TEC) technology is yet to become cost competitive with other renewable energy sources. Understanding the interaction between energy production and the costs incurred harvesting that energy may unlock the economic potential of this technology. Although hydrodynamic simulation of TEC arrays has matured over time, including demonstration of how small and large arrays affect the resource, integration of cost modelling is often limited. The advanced ocean energy array techno-economic modelling tool ‘DTOcean’ enables designers to calculate and improve the levelised cost of energy (LCOE) of an array through parametric simulation of the energy extraction, design of the electrical network, moorings and foundations, and simulation of the installation and lifetime operations and maintenance of the array. This work presents a verification of DTOcean’s ability to simulate the techno-economic performance of TEC arrays by reproducing the hypothetical RM1 reference model, a semi-analytical model of a TEC array based in the Tacoma Narrows of Washington state, U.S.A. It is demonstrated that DTOcean can produce a reasonable estimate to the LCOE predicted by the reference model, giving (in Euro cents per kiloWatt hour) 36.69 ¢/kWh against the reference model’s 34.612 ¢/kWh for 10 TECs, while for 50 TECs, DTOcean calculated 20.34 ¢/kWh compared to 17.34 ¢/kWh for the reference model.


2020 ◽  
Vol 20 (3) ◽  
pp. 343-353
Author(s):  
Ngo Van He ◽  
Le Thi Thai

In this paper, a commercial CFD code, ANSYS-Fluent has been used to investigate the effect of mesh number generated in the computed domain on the CFD aerodynamic performances of a container ship. A full-scale model of the 1200TEU container ship has been chosen as a reference model in the computation. Five different mesh numbers for the same dimension domain have been used and the CFD aerodynamic performances of the above water surface hull of the ship have been shown. The obtained CFD results show a remarkable effect of mesh number on aerodynamic performances of the ship and the mesh convergence has been found. The study is an evidence to prove that the mesh number has affected the CFD results in general and the accuracy of the CFD aerodynamic performances in particular.


2021 ◽  
Vol 11 (3) ◽  
pp. 1033
Author(s):  
Jia Guo ◽  
Timing Qu ◽  
Liping Lei

Pitch regulation plays a significant role in improving power performance and achieving output control in wind turbines. The present study focuses on a novel, pitch-regulated vertical axis wind turbine (VAWT) with inclined pitch axes. The effect of two pitch parameters (the fold angle and the incline angle) on the instantaneous aerodynamic forces and overall performance of a straight-bladed VAWT under a tip-speed ratio of 4 is investigated using an actuator line model, achieved in ANSYS Fluent software and validated by previous experimental results. The results demonstrate that the fold angle has an apparent influence on the angles of attack and forces of the blades, as well as the power output of the wind turbine. It is helpful to further study the dynamic pitch regulation and adaptable passive pitch regulation of VAWTs. Incline angles away from 90° lead to the asymmetric distribution of aerodynamic forces along the blade span, which results in an expected reduction of loads on the main shaft and the tower of VAWTs.


1997 ◽  
Vol 119 (3) ◽  
pp. 655-662 ◽  
Author(s):  
K. Brun ◽  
R. D. Flack

The unsteady velocity field found in the turbine of an automotive torque converter was measured using laser velocimetry. Velocities in the inlet, quarter, mild, and exit planes of the turbine were investigated at two significantly different turbine/pump rotational speed ratios: 0.065 and 0.800. A data organization method was developed to visualize the three-dimensional, periodic unsteady velocity field in the rotating frame. For this method, the acquired data are assumed to be periodic at synchronous and blade interaction frequencies. Two shaft encoders were employed to obtain the instantaneous angular position of the torque converter pump and turbine at the instant of laser velocimeter data acquisition. By proper “registration” of the velocity data, visualizing the transient interaction effects between the turbine, pump, and stator was possible. Results showed strong cyclic velocity fluctuations in the turbine inlet plane as a function of the relative turbine-pump position. These fluctuations are due to the passing of upstream pump blades by the slower rotating turbine blades. Typical fluctuations in the through flow velocity were 3.6 m/s. Quarter and midplane velocity fluctuations were seen to be lower; typical values were 1.5 m/s and 0.8 m/s, respectively. The flow field in the turbine exit plane was seen to be relatively steady with negligible fluctuations of less than 0.03 m/s. From the velocity data, the fluctuations of turbine performance parameters such as flow inlet angles, root-mean-square unsteadiness, and output torque per blade passage were calculated. Incidence angles were seen to vary by 3 and 6 deg for the 0.800 and 0.065 speed ratios, respectively, while the exit angles remained steady. The turbine output torque per blade passage fluctuated by 0.05 Nm for the 0.800 speed ratio and 0.13 Nm for the 0.065 speed ratio.


1970 ◽  
Vol 185 (1) ◽  
pp. 407-424 ◽  
Author(s):  
H. R. M. Craig ◽  
H. J. A. Cox

A comprehensive method of estimating the performance of axial flow steam and gas turbines is presented, based on analysis of linear cascade tests on blading, on a number of turbine test results, and on air tests of model casings. The validity of the use of such data is briefly considered. Data are presented to allow performance estimation of actual machines over a wide range of Reynolds number, Mach number, aspect ratio and other relevant variables. The use of the method in connection with three-dimensional methods of flow estimation is considered, and data presented showing encouraging agreement between estimates and available test results. Finally ‘carpets’ are presented showing the trends in efficiencies that are attainable in turbines designed over a wide range of loading, axial velocity/blade speed ratio, Reynolds number and aspect ratio.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Katarina Yuen ◽  
Senad Apelfröjd ◽  
Mats Leijon

At Uppsala University, a research group is investigating a system for converting the power in freely flowing water using a vertical-axis turbine directly connected to a permanent magnet generator. An experimental setup comprising a turbine, a generator, and a control system has been constructed and will be deployed in the Dalälven river in the town of Söderfors in Sweden. The design, construction, simulations, and laboratory tests of the control system are presented in this paper. The control system includes a startup sequence for the turbine and load control. These functions have performed satisfactorily in laboratory tests. Simulations of the system show that the power output is not maximized at the same tip-speed ratio as that which maximizes the turbine power capture.


Sign in / Sign up

Export Citation Format

Share Document