New type of motion trajectory for increasing the power extraction efficiency of flapping wing devices

Energy ◽  
2019 ◽  
Vol 189 ◽  
pp. 116072 ◽  
Author(s):  
Bo Wang ◽  
Bing Zhu ◽  
Wei Zhang
Author(s):  
D Dinesh Kumar ◽  
Challa Babu ◽  
K Jyotheeswara Reddy ◽  
K Kumar ◽  
N K Kumar

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Jianyang Zhu

The effect of varying damping coefficient C∗, spring coefficient K∗, and mass ratio M∗ on the semiactive flapping wing power extraction performance was numerically studied in this paper. A numerical code based on Finite Volume method to solve the two-dimensional Navier-Stokes equations and coupled with Finite Center Difference method to solve the passive plunging motion equation is developed. At a Reynolds number of 3400 and the pitching axis at quarter chord from the leading edge of the wing, the power extraction performance of the semiactive flapping wing with different damping coefficient, spring coefficient, and mass ratio is systematically investigated. The optimal set of spring coefficient is found at a value of 1.00. However, the variation of mass ratio M∗ cannot increase the maximum mean power coefficient and power efficiency, but it can influence the value of damping coefficient C∗ at which the wing achieves the maximum mean power coefficient and power efficiency. Moreover, insensitivity of the mean power coefficient and power efficiency to the variation of damping coefficient C∗ is observed for the wing with smaller mass ratio, which indicates the wing with smaller M∗ has better working stability.


2011 ◽  
Vol 48-49 ◽  
pp. 300-303
Author(s):  
Yun Liu ◽  
Zhi Sheng Jing ◽  
Shan Chao Tu ◽  
Ming Hao Yu ◽  
Guo Wei Qin

The characteristics and the application prospect are analyzed. It is concluded that bionic flapping-wing flying has better lift fore generation efficiency, which is the development trend of aerial vehicles. By the scaling effect analysis on bionic flying mechanism, it is presented that bionic flying could be realized more easily when the sizes are decreased. In this article, the flying mechanism of inset and Aves was studied and the high lift force mechanism of flapping-winging was concluded. In order to make the flapping-flying easier, we design a new type flapping-flying mechanism. A set of flapping-wing move comparatively. It can provide lift force all the time. We test the lift force in the condition of different speed and different frequency. The lift effect is validated on a simple suspend flight device. An experimental platform to measure the aerodynamic force is devised and developed by ourselves. On this equipment, the aerodynamics force of the prototype is test. The result is that enhancing speed or frequency can improve lift force in evidence


Author(s):  
Yadong Li ◽  
Guoqing Zhou ◽  
Jie Wu

The power extraction performance of a fully-active flapping foil with synthetic jet is numerically investigated in this work. An elliptic airfoil with ratio of 8, which is placed in a two-dimensional laminar flow, is adopted to extract power from the flow. The foil implements the imposed translational and rotational motions synchronously. A pair of synthetic jets with the same frequency and strength is integrated into the upper and lower surfaces of flapping foil. As a result, the flow field around the foil could be affected by the synthetic jets greatly. At the Reynolds number of 1000 and the pitching axis location of half chord, the effects of the jet strength, the inclined angle between the jet direction and the chord line, as well as the phase angle between the synthetic jets and the flapping motion on the power extraction performance are systematically investigated. Compared with the traditional flapping foil, it is demonstrated that the enhancement of power extraction efficiency can be achieved with the help of synthetic jets. Based on the numerical analysis, it is indicated that the jet flow on the foil surfaces alters the vortex-shedding process and modifies the pressure distribution on the foil surface. As a result, the overall power extraction of the flapping foil can be benefitted.


2014 ◽  
Vol 494-495 ◽  
pp. 1046-1049
Author(s):  
Xu Yang ◽  
Xiao Yi Jin ◽  
Xiao Lei Zhou

The flapping wing flying robot is an imitation of a bird or insect like a new type of flying robots, the paper briefly outlines the current domestic and international research in the field of flapping wing flight mechanism of the progress made flapping wing flying robot design. On this basis, the current course of the study were discussed key technical issues, combined with the current research, flapping wing aircraft for the future development prospects.


Sign in / Sign up

Export Citation Format

Share Document