Dynamic behavior of supercritical organic Rankine cycle using zeotropic mixture working fluids

Energy ◽  
2020 ◽  
Vol 191 ◽  
pp. 116576 ◽  
Author(s):  
Xiaoxue Chen ◽  
Chao Liu ◽  
Qibin Li ◽  
Xurong Wang ◽  
Shukun Wang
2019 ◽  
Vol 9 (9) ◽  
pp. 1865 ◽  
Author(s):  
Quentin Blondel ◽  
Nicolas Tauveron ◽  
Nadia Caney ◽  
Nicolas Voeltzel

The Organic Rankine Cycle (ORC) is widely used in industry to recover low-grade heat. Recently, some research on the ORC has focused on micro power production with new low global warming potential (GWP) replacement working fluids. However, few experimental tests have investigated the real performance level of this system in comparison with the ORC using classical fluids. This study concerns the experimental analysis and comparison of a compact (0.25 m3) Organic Rankine Cycle installation using as working fluids the NovecTM649 pure fluid and a zeotropic mixture composed of 80% NovecTM649 and 20% HFE7000 (mass composition) for low-grade waste heat conversion to produce low power. The purpose of this experimental test bench is to study replacement fluids and characterize them as possible replacement fluid candidates for an existing ORC system. The ORC performance with the pure fluid, which is the media specifically designed for this conversion system, shows good results as a replacement fluid in comparison with the ORC literature. The use of the mixture leads to a 10% increase in the global performance of the installation. Concerning the expansion component, an axial micro-turbine, its performance is only slightly affected by the use of the mixture. These results show that zeotropic mixtures can be used as an adjustment parameter for a given ORC installation and thus allow for the best use of the heat source available to produce electricity.


2015 ◽  
Vol 36 (2) ◽  
pp. 75-84
Author(s):  
Yan-Na Liu ◽  
Song Xiao

AbstractIn this paper, the thermodynamic investigation on the use of geothermal water (130 °C as maximum) for power generation through a basic Rankine has been presented together with obtained main results. Six typical organic working fluids (i.e., R245fa, R141b, R290, R600, R152a, and 134a) were studied with modifying the input pressure and temperature to the turbine. The results show that there are no significant changes taking place in the efficiency for these working fluids with overheating the inlet fluid to the turbine, i.e., efficiency is a weak function of temperature. However, with the increasing of pressure ratio in the turbine, the efficiency rises more sharply. The technical viability is shown of implementing this type of process for recovering low temperature heat resource.


2018 ◽  
Vol 157 ◽  
pp. 169-175 ◽  
Author(s):  
Yongzhen Wang ◽  
Jun Zhao ◽  
Guibing Chen ◽  
Shuai Deng ◽  
Qingsong An ◽  
...  

2021 ◽  
Vol 2057 (1) ◽  
pp. 012102
Author(s):  
D Ye Lola ◽  
A Yu Chirkov ◽  
Yu A Borisov

Abstract The paper analyzes the implementation of plants with an organic Rankine cycle (ORC) on the example of the circuit of the regenerative gas turbine unit and exhaust gas recovery system of the compressor system of the gas-compressor unit. The theoretically achievable values of power generated by the ORC-installations are determined. A criterion is presented for comparing the working fluids according to the efficiency of use in ORC-installations. To evaluate the overall characteristics of the system, the parameters of heat exchangers for air and water cooling were determined. As a result, it is concluded that the use of ORC-installations allows to utilize up to 23% of the heat of exhaust gases (convert into useful work).


Author(s):  
Huijuan Chen ◽  
D. Yogi Goswami ◽  
Muhammad M. Rahman ◽  
Elias K. Stefanakos

A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power is proposed and analyzed in this paper. A supercritical Rankine cycle does not go through two-phase region during the heating process. By adopting zeotropic mixtures as the working fluids, the condensation process happens non-isothermally. Both of the features create a potential in reducing the irreversibility and improving the system efficiency. A comparative study between an organic Rankine cycle and the proposed supercritical Rankine cycle shows that the proposed cycle improves the cycle thermal efficiency, exergy efficiency of the heating and the condensation processes, and the system overall efficiency.


Sign in / Sign up

Export Citation Format

Share Document