Throttling components effect on aerodynamic performance of superheated steam flow in multi-stage high pressure reducing valve

Energy ◽  
2021 ◽  
pp. 120769
Author(s):  
Fu-qiang Chen ◽  
Zhi-jiang Jin
2017 ◽  
Vol 110 ◽  
pp. 753-767 ◽  
Author(s):  
Fu-qiang Chen ◽  
Ming Zhang ◽  
Jin-yuan Qian ◽  
Yang Fei ◽  
Li-long Chen ◽  
...  

2019 ◽  
Vol 44 (59) ◽  
pp. 31263-31274
Author(s):  
Fu-qiang Chen ◽  
Xiao-dong Ren ◽  
Bo Hu ◽  
Xue-song Li ◽  
Chun-wei Gu ◽  
...  

Author(s):  
Jin-yuan Qian ◽  
Cong-wei Hou ◽  
Jia-yi Wu ◽  
Zhi-xin Gao ◽  
Zhi-jiang Jin

2018 ◽  
Vol 128 ◽  
pp. 1238-1248 ◽  
Author(s):  
Cong-wei Hou ◽  
Jin-yuan Qian ◽  
Fu-qiang Chen ◽  
Wei-kang Jiang ◽  
Zhi-jiang Jin

2016 ◽  
Vol 119 ◽  
pp. 81-90 ◽  
Author(s):  
Jin-yuan Qian ◽  
Ming Zhang ◽  
Li-nan Lei ◽  
Fu-qiang Chen ◽  
Li-long Chen ◽  
...  

2018 ◽  
Vol 61 ◽  
pp. 26-37 ◽  
Author(s):  
Fu-qiang Chen ◽  
Jin-yuan Qian ◽  
Min-rui Chen ◽  
Ming Zhang ◽  
Li-long Chen ◽  
...  

2021 ◽  
Author(s):  
Ebikebena M. Ombe ◽  
Ernesto G. Gomez ◽  
Aldia Syamsudhuha ◽  
Abdullah M. AlKwiter

Abstract This paper discusses the successful deployment of Multi-stage Fracturing (MSF) completions, composed of novel expandable steel packers, in high pressure, high temperature (HP/HT) horizontal gas wells. The 5-7/8" horizontal sections of these wells were drilled in high pressure, high temperature gas bearing formations. There were also washed-outs & high "dog-legs" along their wellbores, due to constant geo-steering required to keep the laterals within the hydrocarbon bearing zones. These factors introduced challenges to deploying the conventional MSF completion in these laterals. Due to the delicate nature of their packer elastomers and their susceptibility to degradation at high temperature, these conventional MSF completions could not be run in such hostile down-hole conditions without the risk of damage or getting stuck off-bottom. This paper describes the deployment of a novel expandable steel packer MSF completion in these tough down-hole conditions. These expandable steel packers could overcome the challenges mentioned above due to the following unique features: High temperature durability. Enhanced ruggedness which gave them the ability to be rotated & reciprocated during without risk of damage. Reduced packer outer diameter (OD) of 5.500" as compared to the 5.625" OD of conventional elastomer MSF packers. Enhanced flexibility which enabled them to be deployed in wellbores with high dog-leg severity (DLS). With the ability to rotate & reciprocate them while running-in-hole (RIH), coupled with their higher annular clearance & tolerance of high temperature, the expandable steel packers were key to overcoming the risk of damaging or getting stuck with the MSF completion while RIH. Also, due to the higher setting pressure of the expandable steel packers when compared to conventional elastomer packers, there was a reduced risk of prematurely setting the packers if high circulating pressure were encountered during deployment. Another notable advantage of these expandable packers is that they provided an optimization opportunity to reduce the number of packers required in the MSF completion. In a conventional MSF completion, two elastomer packers are usually required to ensure optimum zonal isolation between each MSF stage. However, due to their superior sealing capability, only one expandable steel packer is required to ensure good inter-stage isolation. This greatly reduces the number of packers required in the MSF completion, thereby reducing its stiffness & ultimately reducing the probability of getting stuck while RIH. The results of using these expandable steel packers is the successful deployment of the MSF completions in these harsh down-hole conditions, elimination of non-productive time associated with stuck or damaged MSF completion as well as the safe & cost-effective completion in these critical horizontal gas wells.


Author(s):  
Fu-qiang Chen ◽  
Zhi-xin Gao ◽  
Jin-yuan Qian ◽  
Zhi-jiang Jin

In this paper, a new high multi-stage pressure reducing valve (HMSPRV) is proposed. The main advantages include reducing noise and vibration, reducing energy consumption and dealing with complex conditions. As a new high pressure reducing valve, its flow characteristics need to be investigated. For that the valve opening has a great effect on steam flow, pressure reduction and energy consumption, thus different valve openings are taken as the research points to investigate the flow characteristics. The analysis is conducted from four aspects: pressure, velocity, temperature fields and energy consumption. The results show that valve opening has a great effect on flow characteristics. No matter for pressure, velocity or temperature field, the changing gradient mainly reflects at those throttling components for all valve openings. For energy consumption, in the study of turbulent dissipation rate, it can be found that the larger of valve opening, the larger of energy consumption. It can be concluded that the new high multi-stage pressure reducing valve works well under complex conditions. This study can provide technological support for achieving pressure regulation, and benefit the further research work on energy saving and multi-stage design of pressure reducing devices.


Author(s):  
Lucas Pawsey ◽  
David John Rajendran ◽  
Vassilios Pachidis

An unlocated shaft failure in the high pressure turbine spool of an engine may result in a complex orbiting motion along with rearward axial displacement of the high pressure turbine rotor sub-assembly. This is due to the action of resultant forces and limitations imposed by constraints such as the bearings and turbine casing. Such motion of the rotor following an unlocated shaft failure, results in the development of multiple contacts between the components of the rotor sub-assembly, the turbine casing, and the downstream stator casing. Typically, in the case of shrouded rotor blades, the tip region is in the form of a seal with radial protrusions called ‘fins’ between the rotor blade and the turbine casing. The contact between the rotor blade and the turbine casing will therefore result in excessive wear of the tip seal fins, resulting in changes in the geometry of the tip seal domain that affects the characteristics of the tip leakage vortex. The rotor sub-assembly with worn seals may also be axially displaced rearwards, and consequent to this displacement, changes in the geometry of the rotor blade may occur because of the contact between the rotor sub-assembly and the downstream stator casing. An integrated approach of structural analyses, secondary air system dynamics, and 3D CFD is adopted in the present study to quantify the effect of the tip seal damage and axial displacement on the aerodynamic performance of the turbine stage. The resultant geometry after wearing down of the fins in the tip seal, and rearward axial displacement of the rotor sub-assembly is obtained from LS-DYNA simulations. 3D RANS analyses are carried out to quantify the aerodynamic performance of the turbine with worn fins in the tip seal at three different axial displacement locations i.e. 0 mm, 10 mm and 15 mm. The turbine performance parameters are then compared with equivalent cases in which the fins in the tip seal are intact for the same turbine axial displacement locations. From this study it is noted that the wearing of tip seal fins results in reduced turbine torque, power output and efficiency, consequent to changes in the flow behaviour in the turbine passages. The reduction in turbine torque will result in the reduction of the terminal speed of the rotor during an unlocated shaft failure. Therefore, a design modification that can lead to rapid wearing of the fins in the tip seal after an unlocated shaft failure holds promise for the management of a potential over-speed event.


Sign in / Sign up

Export Citation Format

Share Document