scholarly journals Optimize heat prosumers' economic performance under current heating price models by using water tank thermal energy storage

Energy ◽  
2022 ◽  
Vol 239 ◽  
pp. 122103
Author(s):  
Haoran Li ◽  
Juan Hou ◽  
Zhiyong Tian ◽  
Tianzhen Hong ◽  
Natasa Nord ◽  
...  
Author(s):  
Shahim Nisar

Abstract: Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used at a later time for heating and cooling applications and power generation. TES systems are used particularly in buildings and in industrial processes. This paper is focused on TES technologies that provide a way of valorizing solar heat and reducing the energy demand of buildings. The principles of several energy storage methods and calculation of storage capacities are described. Sensible heat storage technologies, including water tank, underground and packed-bed storage methods, are briefly reviewed. Additionally, latent-heat storage systems associated with phase-change materials for use in solar heating/cooling of buildings, solar water heating, heat-pump systems, and concentrating solar power plants as well as thermo-chemical storage are discussed. Finally, cool thermal energy storage is also briefly reviewed and outstanding information on the performance and costs of TES systems are included.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4842 ◽  
Author(s):  
Ryszard Zwierzchowski ◽  
Marcin Wołowicz

The paper contains a simplified energy and exergy analysis of pumps and pipelines system integrated with Thermal Energy Storage (TES). The analysis was performed for a combined heat and power plant (CHP) supplying heat to the District Heating System (DHS). The energy and exergy efficiency for the Block Part of the Siekierki CHP Plant in Warsaw was estimated. CHP Plant Siekierki is the largest CHP plant in Poland and the second largest in Europe. The energy and exergy analysis was executed for the three different values of ambient temperature. It is according to operation of the plant in different seasons: winter season (the lowest ambient temperature Tex = −20 °C, i.e., design point conditions), the intermediate season (average ambient temperature Tex = 1 °C), and summer (average ambient temperature Tex = 15 °C). The presented results of the analysis make it possible to identify the places of the greatest exergy destruction in the pumps and pipelines system with TES, and thus give the opportunity to take necessary improvement actions. Detailed results of the energy-exergy analysis show that both the energy consumption and the rate of exergy destruction in relation to the operation of the pumps and pipelines system of the CHP plant with TES for the tank charging and discharging processes are low.


2021 ◽  
Vol 246 ◽  
pp. 03003
Author(s):  
Willy Villasmil ◽  
Marcel Troxler ◽  
Reto Hendry ◽  
Philipp Schuetz ◽  
Jörg Worlitschek

In combination with seasonal thermal energy storage (STES), solar energy offers a vast potential for decarbonizing the residential heat supply. In this work, a parametric optimization is conducted to assess the potential of reducing the costs of water-based STES through the use of alternative thermal insulation materials and the integration of an underground storage outside the building. The investigated configurations include: a hot-water tank, a solar collector installation, and a multifamily building with a solar fraction of 100%. The storage is either integrated inside the building or buried underground in its direct vicinity. A simulation-based analysis shows that if the tank is integrated inside an existing building (as part of a retrofitting action) – where costs are primarily driven by the loss of living space – vacuum-insulation panels can lead to significant savings in living space and a cost advantage compared to the use of conventional glass wool. Nevertheless, storage integration inside an existing building is a more expensive option compared to an external integration due to the high costs associated to the internal building modification and loss of living space. Despite the high excavation costs and increased heat losses, the concept of burying the storage underground is a promising option to allow the integration of large-volume seasonal storage systems in new and existing buildings.


Author(s):  
Michael J. Kazmierczak ◽  
Sreenidhi Krishnamoorthy ◽  
Abhishek Gupta

Experiments were performed to charge either cold or hot water thermal energy storage tanks using a heat exchanger equipped with multiple thermoelectric (TE) modules. The primary objective was to design a simple, but effective, modular Peltier heat pump system component to provide chilled or hot water for domestic use at the appliance level, and when arranged in multiple unit combinations, a system that can potentially satisfy small home cooling and heating requirements. Moreover, when the TEs are directly energized using solar PV panels, the system provides a renewable, pollution free and off-the-grid solution to supplement home energy needs. The present work focuses on the design and testing of a thermoelectric heat exchanger component that consists of two water channels machined from two aluminum plates with an array of three or five thermoelectric modules placed in between to transiently cool and/or heat the water in the thermal energy storage tank. The water passing over either the cold or hot side of the TE modules is recirculated to charge the cold or hot thermal storage tank, respectively. The temperatures in the prototype Peltier heat exchanger test component and thermal energy water storage tank were measured during both cold tank charging and hot tank charging operation. The thermal efficiencies of TE heat pump cooling/heating system are reported. The effects of TE power input, number of TE units and rate of fluid flow are studied.


Sign in / Sign up

Export Citation Format

Share Document