Experimental study of effect of slickwater fracturing on coal pore structure and methane adsorption

Energy ◽  
2021 ◽  
pp. 122421
Author(s):  
Jun Li ◽  
Qiming Huang ◽  
Gang Wang ◽  
Enmao Wang ◽  
Shuang Ju ◽  
...  
2010 ◽  
Vol 150-151 ◽  
pp. 825-828
Author(s):  
Yan Wang ◽  
Di Tao Niu ◽  
Yuan Yao Miao ◽  
Nai Qi Jiao

The concrete microstructure can affect its macroscopic properties, such as the strength and durability, etc. Based on the experimental study of cube compressive strength of steel fibre reinforced concrete, splitting tensile strength, flexural strength, and using by mercury intrusion method to test the pore structure of steel fibrous, this paper analyzes the influence of fibre on concrete pore structure. And then on mechanical properties of concrete from microcosmic perspective.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Run Chen ◽  
Yong Qin ◽  
Pengfei Zhang ◽  
Youyang Wang

The pore structure and gas adsorption are two key issues that affect the coal bed methane recovery process significantly. To change pore structure and gas adsorption, 5 coals with different ranks were treated by CS2 for 3 h using a Soxhlet extractor under ultrasonic oscillation conditions; the evolutions of pore structure and methane adsorption were examined using a high-pressure mercury intrusion porosimeter (MIP) with an AutoPore IV 9310 series mercury instrument. The results show that the cumulative pore volume and specific surface area (SSA) were increased after CS2 treatment, and the incremental micropore volume and SSA were increased and decreased before and after Ro,max=1.3%, respectively; the incremental big pore (greater than 10 nm in diameter) volumes were increased and SSA was decreased for all coals, and pore connectivity was improved. Methane adsorption capacity on coal before and after Ro,max=1.3% also was increased and decreased, respectively. There is a positive correlation between the changes in the micropore SSA and the Langmuir volume. It confirms that the changes in pore structure and methane adsorption capacity due to CS2 treatment are controlled by the rank, and the change in methane adsorption is impacted by the change of micropore SSA and suggests that the changes in pore structure are better for gas migration; the alteration in methane adsorption capacity is worse and better for methane recovery before and after Ro,max=1.3%. A conceptual mechanism of pore structure is proposed to explain methane adsorption capacity on CS2 treated coal around the Ro,max=1.3%.


2018 ◽  
Author(s):  
Dong Feng ◽  
Xingfang Li ◽  
Chaojie Zhao ◽  
Jing Li ◽  
Qing Liu ◽  
...  

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhen Liu ◽  
Mingrui Zhang ◽  
Shijian Yu ◽  
Lin Xin ◽  
Gang Wang ◽  
...  

Underground coal gasification and exploitation of geothermal mine resources can effectively improve coal conversion and utilization efficiency, and the basic theory of the above technologies generally relies on the change law of the coal pore structure under thermal damage. Therefore, the influence mechanism of the development of the coal pore structure under thermal damage is analyzed by the nuclear magnetic resonance experiment, and the temperature-permeability fractal model is created. The results show that compared with microtransitional pores, the volume of meso-macropores in the coal body is more susceptible to an increase in temperature, which was most obvious at 200-300°C. During the heating process, the measured fractal dimension based on the T2 spectral distribution is between 2 and 3, indicating that the fractal characteristics did not disappear upon a change in external temperature. The temperature has a certain negative correlation with DmNMR, DMNMR, and DNMR, indicating that the complexity of the pore structure of the coal body decreased gradually with the increase of the temperature. Compared with the permeability calculated based on the theoretical permeability fractal model, the permeability obtained from the temperature-permeability fractal model has a similar increasing trend as the permeability measured by the NMR experiment when the temperature increases. The experimental study on pore structure and permeability characteristics of the low metamorphic coal under thermal damage provides a scientific theory for underground coal gasification and geothermal exploitation.


Sign in / Sign up

Export Citation Format

Share Document