The role of modified diesel generation within isolated power systems

Energy ◽  
2021 ◽  
pp. 122829
Author(s):  
James Hamilton ◽  
Michael Negnevitsky ◽  
Xiaolin Wang
Keyword(s):  
2020 ◽  
Vol 26 (3) ◽  
pp. 20-25
Author(s):  
Laurențiu Bogdan Asalomia ◽  
Gheorghe Samoilescu

AbstractThe paper analyses the role of control and monitoring of electro-energetic equipment in order to reduce operational costs, increase profits and reduce carbon emissions. The role of SCADA and EcoStruxure Power systems is presented and analysed taking into account the energy consumption and its savings. The paper presents practical and modern solutions to reduce energy consumption by up to 53%, mass by up to 47% and increase the life of the equipment by adjusting the electrical parameters. The Integrated Navigation System has allowed an automatic control and an efficient management. For ships, the implementation of an energy efficiency design index and new technologies was required for the GREEN SHIP project.


Smart Energy ◽  
2021 ◽  
Vol 2 ◽  
pp. 100016
Author(s):  
O. Pupo-Roncallo ◽  
J. Campillo ◽  
D. Ingham ◽  
L. Ma ◽  
M. Pourkashanian

2020 ◽  
Vol 12 (5) ◽  
pp. 1793 ◽  
Author(s):  
Alexandros Korkovelos ◽  
Hisham Zerriffi ◽  
Mark Howells ◽  
Morgan Bazilian ◽  
H-Holger Rogner ◽  
...  

Achieving universal access to electricity by 2030 is a key part of the Agenda for Sustainable Development, and has its own Sustainable Development Goal, SDG 7.1. This is because electricity services are required for almost all aspects of a modern economy, from the cooling of vaccines to irrigation pumping, to manufacturing and running a business. The achievement of SDG 7.1 will require a thoughtful mix of policy, finance, and technology to be designed and implemented at scale. Yet, the pressing need for an electrification ramp-up is not unprecedented. Many countries (now considered “industrialized”) faced similar challenges about a century ago. Although the existing literature covers a great deal of power systems evolution, there is a gap around the specific role and impact of small, isolated power systems in the early stages of electricity uptake. In this paper, we provide insights based on the review of the historical electrification efforts in four (now middle and high-income) countries. The drivers and context of electrification efforts in early stages are described. Those focus particularly on the role of dispersed, small-scale generation systems (mini-grids). Our analysis shows that electrification follows four loosely defined phases, namely: pilot projects, technological roll-out, economic expansion, and social scale-up. We report a selection of historical mistakes and advances that offer lessons of striking importance for today´s energy access efforts, particularly in regards to the development of mini-grids. We find that today, as historically, multi-stakeholder (e.g., planners, regulators, developers, investors, third party actors) collaboration is key and can help build locally adaptable, economically sustainable and community compatible mini-grids that can accelerate—and lower the societal costs of—universal access to electricity.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Richard P. Oleksak ◽  
Rafik Addou ◽  
Bharat Gwalani ◽  
John P. Baltrus ◽  
Tao Liu ◽  
...  

AbstractCurrent and future power systems require chromia-forming alloys compatible with high-temperature CO2. Important questions concerning the mechanisms of oxidation and carburization remain unanswered. Herein we shed light onto these processes by studying the very initial stages of oxidation of Fe22Cr and Fe22Ni22Cr model alloys. Ambient-pressure X-ray photoelectron spectroscopy enabled in situ analysis of the oxidizing surface under 1 mbar of flowing CO2 at temperatures up to 530 °C, while postexposure analyses revealed the structure and composition of the oxidized surface at the near-atomic scale. We found that gas purity played a critical role in the kinetics of the reaction, where high purity CO2 promoted the deposition of carbon and the selective oxidation of Cr. In contrast, no carbon deposition occurred in low purity CO2 and Fe oxidation ensued, thus highlighting the critical role of impurities in defining the early oxidation pathway of the alloy. The Cr-rich oxide formed on Fe22Cr in high purity CO2 was both thicker and more permeable to carbon compared to that formed on Fe22Ni22Cr, where carbon transport appeared to occur by atomic diffusion through the oxide. Alternatively, the Fe-rich oxide formed in low purity CO2 suggested carbon transport by molecular CO2.


Energies ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 185 ◽  
Author(s):  
Amrita Raghoebarsing ◽  
Angèle Reinders

The aim of this paper is to give an overview of the energy sector and the current status of photovoltaic (PV) systems in Suriname and to investigate which role PV systems can play in this country’s future energy transition. At this moment, 64% of the power is available from diesel/heavy fuel oil (HFO) gensets while 36% is available from renewables namely hydroelectric power systems and PV systems. Suriname has renewable energy (RE) targets for 2017 and 2022 which already have been achieved by this 36%. However, the RE target of 2027 of 47% must be achieved yet. As there is abundant irradiance available, on an average 1792 kWh/m2/year and because several PV systems have already been successfully implemented, PV can play an important role in the energy transition of Suriname. In order to achieve the 2027 target with only PV systems, an additional 110 MWp of installed PV capacity will be required. Governmental and non-governmental institutes have planned PV projects. If these will be executed in the future than annually 0.8 TWh electricity will be produced by PV systems. In order to meet the electricity demand of 2027 fully, 2.2 TWh PV electricity will be required which implies that more PV systems must be implemented in Suriname besides the already scheduled ones.


2012 ◽  
Vol 85 (7) ◽  
Author(s):  
S. Lozano ◽  
L. Buzna ◽  
A. Díaz-Guilera

Sign in / Sign up

Export Citation Format

Share Document