Exploring the potential of water injection (WI) in a high-load diesel engine under different fuel injection strategies

Energy ◽  
2022 ◽  
pp. 123074
Author(s):  
Zaiwang Chen ◽  
Yikang Cai ◽  
Guangfu Xu ◽  
Huiquan Duan ◽  
Ming Jia
2020 ◽  
pp. 146808742096085
Author(s):  
J Valero-Marco ◽  
B Lehrheuer ◽  
JJ López ◽  
S Pischinger

The approach of this research is to enlarge the knowledge about the methodologies to increase the maximum achievable load degree in the context of gasoline CAI engines. This work is the continuation of a previous work related to the study of the water injection effect on combustion, where this strategy was approached. The operating strategies to introduce the water and the interconnected settings were deeply analyzed in order to optimize combustion and to evaluate its potential to increase the maximum load degree when operating in CAI. During these initial tests, the engine was configured to enhance the mixture autoignition. The compression ratio was high compared to a standard gasoline engine, and suitable fuel injection strategies were selected based on previous studies from the authors to maximize the reactivity of the mixture, and get a stable CAI operation. Once water injection proved to provide encouraging results, the next step dealt in this work, was to go deeper and explore its effects when the engine configuration is more similar to a conventional gasoline engine, trying to get CAI combustion closer to production engines. This means, mainly, lower compression ratios and different fuel injection strategies, which hinders CAI operation. Finally, since all the previous works were performed at constant engine speed, the engine speed was also modified in order to see the applicability of the defined strategies to operate under CAI conditions at other operating conditions. The results obtained show that all these modifications are compatible with CAI operation: the required compression ratio can be reduced, in some cases the injection strategies can be simplified, and the increase of the engine speed leads to better conditions for CAI combustion. Thanks to the analysis of all this data, the different key parameters to manage this combustion mode are identified and shown in the paper.


2012 ◽  
Vol 472-475 ◽  
pp. 1528-1531
Author(s):  
Tie Min Xuan ◽  
Zhi Xia He ◽  
Zhao Chen Jiang ◽  
Yi Yan

Numerical Investigation of Effect Pilot Injection on Combustion Noise and Exhaust Emission of Diesel Engine The traditional mechanical fuel supply system has already been no way to satisfy the requirement of more stringent fuel consumption and emission legislation. For the past few years, it has been a hot topic to improve performance of diesel engine combustion and emission through optimizing the fuel injection strategy. All kinds of spray, combustion and emission models were studied and then the numerical models for the single-injection combustion of 1015 diesel engine were setup and validated through comparing with results from experimental data. With the above verified models, different injection strategies were further investigated to get the effect mechanism of pilot injection (PI) timing and quantity on combustion noise and exhaust emission.


Author(s):  
Katuru Bala Prasad ◽  
Oliva Meduri ◽  
Vallapudi Dhana Raju ◽  
Aruna Kumari Azmeera ◽  
Harish Venu ◽  
...  

Author(s):  
Hayder A. Dhahad ◽  
Mohammed A. Abdulhadi ◽  
Ekhlas M. Alfayyadh ◽  
T. Megaritis

This study investigates the effect of combustion phase (premixed and diffusion phases) duration on the emissions emitted from a high speed direct injection (HSDI) diesel engine fueled with neat (100%) rapeseed methyl ester (RME) and run at a constant speed (1500 rpm) with single injection strategy at constant fuel injection pressure (800 bar) and varying fuel injection timings (−12,−9,−6,−3,0) ATDC, for two loads (2.5 and 5 bars) BMEP. The obtained results were compared with those obtained when the engine run at the same conditions but with ultra-low sulfur diesel fuel (ULSD). In-cylinder pressure was measured and analyzed using (LABVIWE) program. calculation program specially written in (MATLAB) software was used to extract the apparent heat release rate, the ignition delay, combustion duration and specify the amount of heat released during the premixed and diffusion combustion phases (premixed burn fraction PMBF) and (diffusion burn fraction DBF). Emission measurements included; NOx, CO, THC, CO2 and smoke number (SN). The results showed that at high load, RME generate higher NOx, CO and THC. Measurements and calculations indicated that ignition delay of RME was shorter than that of ULSD, which means less PMBF. This conflicting effect is probably due to the advanced start of combustion (SOC) leading to higher combustion temperature inside the combustion chamber and there will be less time available to complete the combustion. The emission results at low load showed that NOx and CO, generated by RME were less than those generated by USLD. USLD produced soot more than RME at high load and less at low load.


Sign in / Sign up

Export Citation Format

Share Document