Load-bearing steel structure diagnostics on bucket wheel excavator, for the purpose of failure prevention

2011 ◽  
Vol 18 (4) ◽  
pp. 1203-1211 ◽  
Author(s):  
Predrag D. Jovančić ◽  
Dragan Ignjatović ◽  
Miloš Tanasijević ◽  
Taško Maneski
2018 ◽  
Vol 157 ◽  
pp. 02024 ◽  
Author(s):  
Bohuš Leitner ◽  
Lucia Figuli

Problems of fatigue life prediction of materials and structures are discussed in the paper. Service loading is assumed as a continuous loading process with possible discontinuous events, which are caused by various operating conditions. The damage in a material is due to a cumulative degradation process. The damaging process is then represented either by rain-flow matrices or by a fatigue damage function which is derived using some hypothesis of a fatigue failure criterion. Presented theoretical procedure enables a very effective estimation of a service life and/or reliable evaluation of residual life of any structures under various types of loading and environmental conditions. This approach creates a good basis for powerful expert systems in structural and mechanical engineering. The aim of the paper is to present briefly some results of analysis of load-bearing steel structure loads of special railway crane PKP 25/20i which was utilized in some specific ad relatively hard operating conditions. Virtual models of the structure were being used in an analysis of acting working dynamics loads influence to be able to forecast fatigue life of load-bearing of the crane jib.


2020 ◽  
Vol 10 (5) ◽  
pp. 1763
Author(s):  
Albert Albareda-Valls ◽  
Alicia Rivera-Rogel ◽  
Ignacio Costales-Calvo ◽  
David García-Carrera

Ceramic-reinforced slabs were widely used in Spain during the second half of the 20th century, especially for industrial buildings. This solution was popular due to the lack of materials at that time, as it requires almost no concrete and low ratios of reinforcement. In this study, we present and discuss the results of a real load-bearing test of a real ceramic-reinforced slab, which was loaded and reloaded cyclically for a duration of one week in order to describe any damage under a high-demand loading series. Due to the design of these slabs, the structural response is based more on shear than on bending due to the low levels of concrete and the geometry and location of re-bars. The low ratio of concrete makes these slabs ideal for short-span structures, mainly combined with steel or RC frames. The slab which was analyzed in this study covers a span of 4.88 m between two steel I-beams (IPN400), and corresponds to a building from the mid-1960s in the city of Igualada (Barcelona, Spain). A load-bearing test was carried out up to 7.50 kN/m2 by using two-story sacks full of sand. The supporting steel beams were propped up in order to avoid any interference in the results of the test; without the shoring of the steel structure, deflections would come from the combination of the ceramic slab together with the steel profiles. A process of loading and unloading was repeated for a duration of six days in order to describe the cyclic response of the slab under high levels of loading. Finally, vibration analysis of the slab was also done; the higher the load applied, the higher the fundamental frequency of the cross section, which is more comfortable in terms of serviceability.


2011 ◽  
Vol 255-260 ◽  
pp. 607-613
Author(s):  
Bing Liao ◽  
Yong Feng Luo ◽  
Xiao Nong Guo

A radial-circle-lined grid shell, its height changed step by step in the radial direction, is adopted in the roof steel structure of the Citizen Water Sports Center in Jiangyin, China. And the Spatial Crossing Tubular (SCT) joint is used for the connection of pipe members. Because the force transmission in the roof structure is different from the traditional truss structure, a lot of SCT joints are in a complicated loading state. The joint forces include axial forces and in/out-of-plane moments. To investigate the mechanical behavior and the load-bearing capacity of a typical SCT joint in such complicated loading condition, a full size model test of the typical SCT joint is conducted. The test process is summarized in the paper, together with the finite element calculation of the typical SCT joint in test conditions. By comparing the numerical results with the test results, several significant parameters of the connection are investigated, including the stiffness change of the joint, the transmission mechanism of forces, the ultimate load-bearing capacity and the failure mode of the joint. After investigation, several useful suggestions are proposed for the SCT joint design. They are also valuable for the design of similar SCT joints under complicated loading condition.


2013 ◽  
Vol 838-841 ◽  
pp. 514-518
Author(s):  
Yi Qing Guo ◽  
Ping Zhou Cao

To overcome the shortcomings of assembly lightweight steel structure residential system in our country. A new type of lightweight energy-saving composite wall is proposed, which is composed by light-gauge shaped steel and thin panel. In order to investigate the load-bearing behaviour and failure mode of the composite wall, 4 wall specimens in full ratio were designed and manufactured. The experiment study is carried out under lateral and vertical loads. The results show that the self-drilling screw integrate the light-gauge shaped steel and thin panel to bear loads. The decrease of self-drilling screw spacing can effectively enhance the load-bearing capacity of the composite wall, and the best choice of the self-drilling screw pitch is 150mm. The composite wall has good bearing and deformation capacity, and it is suitable for applying to light weight steel residential system in our country.


Sign in / Sign up

Export Citation Format

Share Document