Modelling of deformation and failure of slipper-retainer assembly in axial piston machine

2020 ◽  
Vol 111 ◽  
pp. 104490 ◽  
Author(s):  
Gaston Haidak ◽  
Dongyun Wang ◽  
Esther Lisiane Ekemeyong Awong
Author(s):  
Rene Chacon ◽  
Monika Ivantysynova

This paper explains how a combination of advanced multidomain numerical models can be employed to design an axial piston machine of swash plate type within a virtual prototyping environment. Examples for the design and optimization of the cylinder block/valve plate interface are presented.


Author(s):  
Peter A. J. Achten ◽  
Marc P. A. Schellekens

Most hydrostatic pumps and motors apply mechanical face seals, often also acting as a thrust bearing. The load carrying capacity of these bearings is very much dependent on the pressure profile generated in the sealing gap. Previous research, outside pumps and motors, has already shown that the gap pressure profile is largely influenced by small radial deformations of the seal lands. This paper discusses the elastic deformation of pump components and the effects of these deformations on the load carrying capacity of a barrel in an axial piston machine.


1999 ◽  
Vol 121 (3) ◽  
pp. 531-537 ◽  
Author(s):  
Noah D. Manring

In this research, the friction within the cylinder bore of a swash-plate type axial-piston machine is examined. Unlike previous research, this work develops a mathematical model for the friction based upon lubricating conditions which are described by the well-known Stribeck curve. Furthermore, a test device is built for measuring the frictional characteristics during low pressure and low speed operation and these results are compared with the mathematical model. For high pressure and high speed considerations, a numerical investigation based upon the model is conducted and it is shown that the friction associated with a pumping piston is greater than the friction associated with a motoring piston. It is also shown that increased piston speeds usually reduce the friction within the cylinder bore; however, a “cross-over” condition may exist where the increased speed will actually increase the friction as a result of increased fluid shear. Furthermore, it is shown that speed changes have a more significant impact on motoring pistons as opposed to pumping pistons due to a difference in the location of hydrodynamic lubrication within the cylinder bore. It is noted that this difference exits due to the bore geometry and the direction of piston travel.


2013 ◽  
Vol 681 ◽  
pp. 169-174
Author(s):  
Bin Wang ◽  
Shi Long Chen ◽  
Zhi Feng Ye

To find some rules keeping good lubrication condition for plane port pair in high-performance axial piston pump or motor, especially in the very severe applications, a new test rig was built up to simulate the operational principle of port pair, and to form the lubricating oil film for representative parameter acquisition. This rig is principally characterized by supply pressure up to 30 MPa, accurate control of oil film thickness by separate oil circuit design and electrohydraulic feedback control. The tested oil film working properties was analyzed by comparison with theoretical or simulation references. Experiments show that film balance time and thickness are two key parameters for describing oil film properties, and that working condition factors such as supply pressure, lubricating fluid temperature also notably affects the film thickness and its configuration, but they don’t show equivalent action. Lubrication effects can be valued by the tested frictional torque change of port pair.


Author(s):  
Michael Deeken

A research project at the Institute for Fluid Power Drives and Controls (IFAS) sponsored a simulation tool, which was developed to analyze the tribological contacts in an axial piston machine. This paper describes the comparison between simulation and measurement results. The research project defined several objectives. These included extending the program for the tribological contacts, such as slipper/swash plate and cylinder block/valve plate pairings. Furthermore, the results of the simulations were to be verified by means of measurements conducted on the test rig and these were to be performed on a standard unit, if possible. The values to compare simulation and measurement must first be defined in order to meet these objectives.


2013 ◽  
Vol 135 (7) ◽  
Author(s):  
Noah D. Manring ◽  
Viral S. Mehta ◽  
Bryan E. Nelson ◽  
Kevin J. Graf ◽  
Jeff L. Kuehn

Power density is an assumed attribute of an axial-piston swash-plate type hydrostatic machine. As such, very little research has been conducted to examine the nature and limit of this machine's power density and the literature is all but void of this important topic. This paper is being written to fill this void, and to provide a thorough analysis of the machine's power density. This paper is also aimed at identifying the most significant parameters that may be adjusted to increase the power density for a typical machine. As shown in this research, the power density of an axial-piston machine depends upon four dimensionless quantities that are characteristic of the machine's rotating group. As it turns out, the allowable stress for the cylinder block is the most sensitive parameter that may be adjusted for increasing the power density of this machine. It is further shown that increasing the machine's swash-plate angle, and reducing the minimum overhang length for the pistons, will have a significant impact on the power density as well. It is significant to note that altering the number of pistons in the design has essentially no impact on the power density of the machine and therefore the selection of this design parameter must be based upon other design objectives. In conclusion, it is shown in this paper that the power density of a typical machine may be increased by as much as 64% by altering a few of these parameters within a realistic realm of constraint.


Author(s):  
Massimo Borghi ◽  
Emiliano Specchia ◽  
Barbara Zardin ◽  
Enzo Corradini

A stationary model is adopted to determine the critical condition for which the slipper moves away from the swashplate in an axial piston machine. The aim of the analysis is to find the critical speed, i.e. the value of the machine speed for which the slipper moves away from the swashplate; usually this condition may determine bad operating behaviour of the machine, although a retainer plate is used to maintain the slipper sufficiently near to the swashplate. The influences of the pressure transition in the cylinder, the swashplate angle and the radial clearance between piston and cylinder on the critical speed are depicted. Successively, the role of the position of the point of application of the resultant force due to the slipper-retaining plate contact is analyzed.


Sign in / Sign up

Export Citation Format

Share Document