An improved mesh stiffness model for double-helical gear pair with spalling defects considering time-varying friction coefficient under mixed EHL

2021 ◽  
Vol 121 ◽  
pp. 105174
Author(s):  
Siyu Wang ◽  
Rupeng Zhu
2021 ◽  
pp. 1-16
Author(s):  
Siyu Wang ◽  
Rupeng Zhu

Abstract Based on “slice method”, the improved time-varying mesh stiffness (TVMS) calculation model of helical gear pair with tooth surface wear is proposed, in which the effect of friction force that obtained under mixed elasto-hydrodynamic lubrication (EHL) is considered in the model. Based on the improved TVMS calculation model, the dynamic model of helical gear system is established, then the influence of tooth wear parameters on the dynamic response is studied. The results illustrate that the varying reduction extents of mesh stiffness along tooth profile under tooth surface wear, in addition, the dynamic response in time-domain and frequency-domain present significant decline in amplitude under deteriorating wear condition.


2019 ◽  
Vol 24 (3) ◽  
pp. 476-484 ◽  
Author(s):  
Cheng Wang ◽  
Shouren Wang ◽  
Gaoqi Wang

Numerous dynamic models of spur gears, helical gears, bevel gears, and face gears can be found in various studies. However, studies that focus on the dynamic model of a double helical gear pair are quite limited. The author proposed a model of a double helical gear pair by only considering the axial vibration. The author did not consider the friction and multiple backlashes in the proposed model. The friction force of the tooth surface and backlash are important factors that can cause complex non-linear phenomena in gear pairs. Therefore, a dynamic model of a double helical gear pair that takes into consideration the axial vibration, friction and multiple backlashes is proposed. Firstly, based on the tooth contact analysis (TCA) of a double helical gear pair, the path of contact and meshing time from engagement to disengagement are obtained. The formula for determining the sliding friction coefficient is introduced. Based on TCA and the dynamic meshing force provided by the subsequent dynamics model of double helical gear pair, the sliding friction coefficient of the tooth surface is calculated. Secondly, the stiffness excitation, gear-into impact excitation and error excitation (including the axial displacement caused by the errors of manufacture and installation under low speed) are calculated according to the existing research results. Following this, a dynamic model of a double helical gear pair that takes into consideration the axial vibration, friction and multiple backlashes is both built and solved. Finally, an example is presented to verify the corresponding results.


2020 ◽  
Vol 26 (15-16) ◽  
pp. 1356-1366 ◽  
Author(s):  
Cheng Wang

The tooth surface friction is one of the main sources of gear vibration and noise. The current challenging problems in research of a helical gear pair dynamics considering tooth surface friction include the following: (1) Calculation accuracy of the tooth surface friction factor needs to be improved. (2) The meshing process of a helical gear pair has not been fully taken into account in a dynamic model. To solve these problems, a dynamic model of a helical gear pair considering tooth surface friction is proposed in this article. First, based on the tooth contact analysis and loaded tooth contact analysis of a helical gear pair, excitation of time-varying meshing stiffness, the sliding friction coefficient on tooth surface, and the arm of friction force are preliminarily calculated. Second, the dynamic model of a helical gear pair considering tooth surface friction is built and solved, in which the dynamic meshing force/speed/displacement is calculated. The sliding friction coefficient on tooth surface, arm of friction force, and dynamic equations form a coupled system. By decoupling calculation, the model system equations are solved. Finally, an example is presented to verify the proposed model.


2018 ◽  
Vol 2018 ◽  
pp. 1-20 ◽  
Author(s):  
Fang Guo ◽  
Zongde Fang

In the research of gear transmission, the vibration and noise problem has received many concerns all the times. Scholars use tooth modification technique to improve the meshing state of gearings in order to reduce the vibration and noise. However, few of researchers consider the influence of measured manufacturing errors when they do the study of tooth modification. In order to investigate the efficiency of the tooth modification in the actual project, this paper proposes a dynamic model of a helical gear pair including tooth modification and measured manufacturing errors to do a deterministic analysis on the dynamical transmission performance. In this analysis, based on the measured tooth deviation, a real tooth surface (including modification and measured tooth profile error) is fitted by a bicubic B-spline. With the tooth contact analysis (TCA) and loaded tooth contact analysis (LTCA) on the real tooth surface, the loaded transmission error, tooth surface elastic deformation, and load distribution can be determined. Based on the results, the time-varying mesh stiffness and gear mesh impact are computed. Taking the loaded transmission error, measured cumulative pitch error, eccentricity error, time-varying mesh stiffness, and gear mesh impact as the internal excitations, this paper establishes a 12-degree-of-freedom (DOF) dynamic model of a helical gear pair and uses the Fourier series method to solve it. In two situations of low speed and high speed, the gear system dynamic response is analyzed in the time and frequency domains. In addition, an experiment is performed to validate the simulation results. The study shows that the proposed technique is useful and reliable for predicting the dynamic response of a gear system.


2008 ◽  
Vol 130 (5) ◽  
Author(s):  
Song He ◽  
Rajendra Singh

An analytical solution to the dynamic transmission error of a helical gear pair is developed by using a single-degree-of-freedom model with piecewise stiffness functions that characterize the contact plane dynamics and capture the velocity reversal at the pitch line. By assuming a constant mesh stiffness density along the contact lines, a linear time-varying model (with parametric excitations) is obtained, where the effect of sliding friction is quantified by an effective mesh stiffness term. The Floquet theory is then used to obtain closed-form solutions to the dynamic transmission error, and responses are derived to both initial conditions and the forced periodic function under a nominal preload. Analytical models are validated by comparing predictions with numerical simulations, and the effect of viscous damping is examined. Stability analysis is also briefly conducted by using the state transition matrix. Overall, the sliding friction has a marginal effect on the dynamic transmission error of helical gears, as compared with spur gears, in the context of the torsional model.


2020 ◽  
Vol 12 (5) ◽  
pp. 168781402091812
Author(s):  
Ying-Chung Chen

The dynamic response of a helical gear pair system is investigated. A new dynamic model for a helical gear pair system, considering three-dimensional motion due to bearing deformation, is proposed. The proposed model considers the helix angle, gear pair center distance, transverse pressure angle, and the contact ratio as time-dependent variables, which are considered as constants in other models. In fact, three-dimensional motion due to bearing deformation will lead to the changes in a series of dynamic responses. The system equations of motion were obtained by applying Lagrange’s equation and the dynamic responses are computed by the fourth-order Runge–Kutta method. The time-varying dynamic displacements, helix angle, gear pair center distance, transverse pressure angle, and the contact ratio are investigated with bearing deformation, different radial bear stiffness, different axial bear stiffness, and gear eccentricity. The results show that, due to the time-varying effect, this new helical gear pair model provides more accurate dynamic responses than those previous models which are considered as constant. In the future, this study can provide some useful information for the time-varying dynamic design of a helical gear pair system.


2021 ◽  
Vol 1820 (1) ◽  
pp. 012131
Author(s):  
Yongjie Zhang ◽  
Wen Liu ◽  
Chen Song ◽  
Tengjiao Lin ◽  
Mingxu Duan

Author(s):  
Ah-Der Lin ◽  
Jao-Hwa Kuang

Abstract In this study, the frequency spectra of a meshing spur gear pair are derived. A two-step mesh stiffness model is assumed to account for the time varying stiffness during the teeth engagement. The analytic load of this simplified gear pair system is used to derive the corresponding Fourier expansion series of the transmitted torque in close form solutions. Numerical results have shown that the frequency spectra of the transmitted torque are dominated by the mesh stiffness alternation and the contact ratio of a gear pair. Furthermore, the amplitude modulation introduced by a harmonic input torque has also been investigated.


Sign in / Sign up

Export Citation Format

Share Document