A new overall nonlinear damage model for fiber metal laminates based on continuum damage mechanics

2019 ◽  
Vol 206 ◽  
pp. 21-33 ◽  
Author(s):  
M. Kashfi ◽  
G.H. Majzoobi ◽  
N. Bonora ◽  
G. Iannitti ◽  
A. Ruggiero ◽  
...  
2012 ◽  
Vol 498 ◽  
pp. 42-54 ◽  
Author(s):  
S. Benbelaid ◽  
B. Bezzazi ◽  
A. Bezazi

This paper considers damage development mechanisms in cross-ply laminates using an accurate numerical model. Under static three points bending, two modes of damage progression in cross-ply laminates are predominated: transverse cracking and delamination. However, this second mode of damage is not accounted in our numerical model. After a general review of experimental approaches of observed behavior of laminates, the focus is laid on predicting laminate behavior based on continuum damage mechanics. In this study, a continuum damage model based on ply failure criteria is presented, which is initially proposed by Ladevèze. To reveal the effect of different stacking sequence of the laminate; such as thickness and the interior or exterior disposition of the 0° and 90° oriented layers in the laminate, an equivalent damage accumulation which cover all ply failure mechanisms has been predicted. However, the solution algorithm using finite element analysis which implements progressive failure analysis is summarized. The results of the numerical computation have been justified by the previous published experimental observations of the authors.


1990 ◽  
Vol 112 (4) ◽  
pp. 412-421 ◽  
Author(s):  
C. L. Chow ◽  
K. Y. Sze

A recently developed anisotropic model of continuum damage mechanics has been applied successfully to characterize ductile fracture of cracked plates under mode I and mixed mode failures. The damage model is further extended in this investigation to examine its applicability to include notch ductile fracture of thin plates containing a circular hole. Two hole sizes of 16 mm and 24 mm diameters are chosen and the specimen material is aluminum alloy 2024-T3. Fracture loads of the plates are predicted by the damage model and compared satisfactorily with those determined experimentally. This investigation provides an important confirmation that not only the anisotropic model of continuum damage mechanics but also the same failure criterion developed can be effectively employed to characterize both ductile fracture for plates containing an isolated macro-crack or circular hole which would otherwise not be possible using the conventional theory of fracture mechanics. The successful development of the unified approach to characterize ductile failure provides a vital impetus for design engineers in the general application of the theory of continuum damage mechanics to solve practical engineering problems.


2013 ◽  
Vol 05 (04) ◽  
pp. 1350038 ◽  
Author(s):  
H. YAZDANI ◽  
A. NAYEBI

Ratcheting and fatigue damage of thin-walled tube under cyclic bending and steady internal pressure is studied. Chaboche's nonlinear kinematic hardening model extended by considering the effect of continuum damage mechanics employed to predict ratcheting. Lemaitre damage model [Lemaitre, J. and Desmorat, R. [2005] Engineering Damage Mechanics (Springer-Verlag, Berlin)] which is appropriate for low cyclic loading is used. Also the evolution features of whole-life ratcheting behavior and low cycle fatigue (LCF) damage of the tube are discussed. A simplified method related to the thin-walled tube under bending and internal pressure is used and compared well with experimental results. Bree's interaction diagram with boundaries between shakedown and ratcheting zone is determined. Whole-life ratcheting of thin-walled tube reduces obviously with increase of internal pressure.


2011 ◽  
Vol 194-196 ◽  
pp. 919-923 ◽  
Author(s):  
Dong Fang Pan ◽  
Yun Feng Qiao ◽  
Cheng Shuai Sun ◽  
Xue Bing Liu

To propose the damage model of concrete in the freezing-thawing cycles, the reasonable dissipation function and micro plastic deformation expression have been determined based on the continuum damage mechanics. The damage variable is expressed as a function of the number of freezing-thawing cycle. The damage is defined in terms of the loss of the dynamic elastic modules and the damage model of the concrete in the freezing-thawing cycles has been presented.


2013 ◽  
Vol 683 ◽  
pp. 176-181
Author(s):  
Yong Chen ◽  
Bao Jun Pang ◽  
Wei Zheng

In order to establish an elastic damage model for S2-glass/epoxy composite and identify the input parameters, in-plane behaviour of the composite including tensile, compression and tensile shear were investigated through series of tests. Concerning no plasticity, a simple elastic ply damage mechanics model for this composite was characterized based on Continuum Damage Mechanics Model (CDM) and the input parameters were obtained. The model was then implemented into ABAQUS/EXPLICT and the results show the model can capture most of the in-plane behaviour of the composite material.


2016 ◽  
Vol 26 (1) ◽  
pp. 162-188 ◽  
Author(s):  
Ying Sun ◽  
George Z Voyiadjis ◽  
Weiping Hu ◽  
Fei Shen ◽  
Qingchun Meng

Fatigue and fretting fatigue are the main failure mode in bolted joints when subjected to cyclic load. Based on continuum damage mechanics, an elastic–plastic fatigue damage model and a fretting fatigue damage model are combined to evaluate the fatigue property of bolted joints to cover the two different failure modes arisen at two possible critical sites. The predicted fatigue lives agree well with the experimental results available in the literature. The beneficial effects of clamping force on fatigue life improvement of the bolted joint are revealed: part of the load is transmitted by friction force in the contact interface, and the stress amplitude at the critical position is decreased due to the reduction in the force transmitted by the bolt. The negative effect of fretting damage on the bolted joint is also captured in the simulation.


Author(s):  
M. K. Samal ◽  
M. Seidenfuss ◽  
E. Roos ◽  
B. K. Dutta ◽  
H. S. Kushwaha

Prevention of failure of pressurised and high-energy components and systems has been an important issue in design of all types of power and process plants. Each individual component of these systems must be dimensioned such that it can resist the forces or moments to which it will be subjected during normal service and upset conditions. Design by analysis is an important philosophy of modern design. The ability of now-a-days computers to numerically handle complex mathematical problems has inspired the use highly nonlinear material behaviour (including material softening) instead of classical linear constitutive theory for the materials. Under the influence of these developments, a fundamentally different type of modelling has emerged, in which fracture is considered as the ultimate consequence of a material degradation process. Crack initiation and growth then follow naturally from the standard continuum mechanics theory (called continuum damage mechanics). Numerical analyses based on these so-called local damage models, however, are often found to depend on the spatial discretisation (i.e., mesh size of the numerical method used). The growth of damage tends to localise in the smallest band that can be captured by the spatial discretisation. As a consequence, increasingly finer discretisation grids can lead to crack initiation earlier in the loading history and to faster crack growth. This non-physical behaviour is caused by the fact that the localisation of damage in a vanishing volume is no longer consistent with the concept of a continuous damage field, which forms the basis of the continuum damage mechanics approach. In this work, the Rousellier’s damage model has been extended to its nonlocal form using damage parameter ‘d’ as a degree of freedom. The finite element (FE) equations have been derived using the weak form of the governing equations for both mechanical force equilibrium and the damage equilibrium. As an example, a standard fracture mechanics specimen [SE(B)] made up of a German low alloy steel has been analysed in 2D plane strain condition using different mesh sizes near the crack tip. The results of the nonlocal model has been compared with experimental results as well as with those predicted by the local model. It was observed that the fracture resistance predicted by the local damage model goes on decreasing when the mesh size near the crack tip is refined whereas the nonlocal model predicts a converged fracture resistance behaviour which compares well with the experimentally determined behaviour.


2020 ◽  
Vol 54 (21) ◽  
pp. 2837-2852
Author(s):  
Jörg Hohe ◽  
Monika Gall ◽  
Sascha Fliegener ◽  
Zalikha Murni Abdul Hamid

Objective of the present study is the definition of a continuum damage mechanics material model describing the degradation of fiber reinforced materials under fatigue loads up to final failure. Based on the linear elastic framework, a brittle damage model for fatigue conditions is derived, where the damage constitutes the only nonlinearity. The model accounts for damage effects by successive degradation of the elastic moduli. Assuming that material damage is driven by microplastic work, a stress-driven damage evolution equation is defined. For generality, a fully three-dimensional formulation on single ply level is employed. The model is implemented into a finite element program. In a validation against experimental data on filament-wound carbon fiber reinforced material, the model proves to provide a good numerical approximation of the damage during the cyclic loading history up to final material failure.


Author(s):  
Jalaj Kumar ◽  
S. Padma ◽  
B. Srivathsa ◽  
N. Vyaghreswara Rao ◽  
Vikas Kumar

In the present work, a continuum damage mechanics model, based on Lemaitre’s concept of equivalent stress hypothesis (1986, “Local Approach to Fracture,” Eng. Fract. Mech., 25, pp. 523–537), has been applied to study the evolution of damage under monotonic loading condition in a near α IMI-834 titanium alloy, used for aeroengine components in compressor module. The damage model parameters have been experimentally identified by in situ measurement of damage during monotonic deformation using alternating current potential drop technique. The damage model has been applied to predict damage evolution in an axisymmetrically notched specimen using finite element analysis. A reasonably good agreement has been observed between numerically simulated and experimentally measured damage behaviors. Damage micromechanisms operative in this alloy have also been identified which show multiple damage events.


Sign in / Sign up

Export Citation Format

Share Document