Early Age Autogenous Shrinkage Cracking Risk of an Ultra-High Performance Concrete (UHPC) Wall: Modelling and Experimental Results

Author(s):  
J. Kheir ◽  
A. Klausen ◽  
T.A. Hammer ◽  
L. De Meyst ◽  
B. Hilloulin ◽  
...  
2012 ◽  
Vol 525-526 ◽  
pp. 449-452 ◽  
Author(s):  
Jung Jun Park ◽  
Doo Yeol Yoo ◽  
Sung Wook Kim ◽  
Young Soo Yoon

Since ultra-high performance concrete (UHPC) is subject to large occurrence of shrinkage at early age due to its low water-to-cement ratio, the mixing of large quantities of powdered admixtures and the absence of coarse aggregates, UHPC presents large risks of shrinkage cracking caused by the restraints provided by the form and reinforcing bars. Accordingly, this study intends to evaluate the shrinkage behavior of UHPC under restrained state by performing restrained shrinkage test using ring-test. The test results reveal that increasing thickness of the inner ring increases the tensile creep at early age leading to the reduction of the average strain and residual stress of the inner ring.


2010 ◽  
Vol 452-453 ◽  
pp. 725-728 ◽  
Author(s):  
Jung Jun Park ◽  
Sung Wook Kim ◽  
Gum Sung Ryu ◽  
Kwang Myung Lee

Ultra-high performance concrete (UHPC) is a material developing remarkable performance with compressive strength of about 200 MPa and flexural strength of approximately 30 MPa on which research is actively conducted today. However, UHPC is also characterized by a mixing composed of a high specific quantity of binder that is a W/B ratio of about 0.2, which requires to examine the effects of the autogenous shrinkage. Accordingly, this study investigates the effects of the use of expansive additive and water reducing agent on the autogenous shrinkage of UHPC at early age. To that goal, autogenous shrinkage test and ultrasonic pulse velocity (UPV) monitoring are conducted for a mixing of UHPC using expansive additive and shrinkage reducing agent. The experimental results reveal that the autogenous shrinkage of UHPC reduces by 24% for a mix of UHPC adopting both 7.5% of expansive additive and 1% of shrinkage reducing agent compared to the mix without admixture. Furthermore, this mix is seen to compensate the autogenous shrinkage occurring at early age when UHPC develops its largest stiffness in view of the UPV evolution curve. At that time, the shrinkage stress seems to be extremely softened.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2514 ◽  
Author(s):  
Tian-Feng Yuan ◽  
Seong-Kyum Kim ◽  
Kyung-Teak Koh ◽  
Young-Soo Yoon

High-performance concrete (HPC) is widely used in construction according to great mechanical properties, but it has a high risk of shrinkage cracking due to autogenous shrinkage stress. Therefore, the aim of this research was to investigate the effect of a combination of expansive admixture (EA) and shrinkage reducing admixture (SA) on the autogenous shrinkage of high-performance concrete without heat treatment. Two different EA to cement weight ratios of 0.0, 5.0%, and two different SA to cement weight ratios of 0.0, and 1.0% were combined and considered. To investigate the differences in the time-zero conditions effect on the autogenous shrinkage behaviors, four different initial points were compared. The test results indicate that the EA and/or SA content was conductive to a little bite increase compressive strength (22.6–37.9%) and tensile strength (<4.8%). According to the synergistic effect of the EA and SA on the HPC, the autogenous shrinkage significantly decreased (<50%), as compared to those specimens with only one type of admixture (EA or SA). Furthermore, all the specimens incurred restrained autogenous shrinkage cracks at an early age, except the specimen using the combined EA and SA. Therefore, it can be concluded that the combination of EA and SA is effective for improving the properties of HPC.


2009 ◽  
Vol 419-420 ◽  
pp. 1-4 ◽  
Author(s):  
Ying Wei Yun ◽  
Ii Young Jang ◽  
Seong Kyum Kim ◽  
Seung Min Park

High-performance concrete (HPC) as a promising construction material has been widely used in infrastructures and high-rise buildings etc. However, its pretty high autogenous shrinkage (AS) especially in its early age becomes one of the key problems endangering long-time durability of HPC structures. This paper carried out the early age AS research of large scaled HPC column specimens by embedded Fiber Bragg-Grating (FBG) strain sensor. Temperature compensation for FBG strain sensor by thermocouple was also attempted in this paper, and the results were reasonable and acceptable comparing with the result compensated by FBG temperature sensor. Reinforcement influence, size effect and temperature effect on HPC AS were also analyzed respectively in this paper.


2019 ◽  
Vol 271 ◽  
pp. 07008
Author(s):  
William Toledo ◽  
Leticia Davila ◽  
Ahmed Al-Basha ◽  
Craig Newtson ◽  
Brad Weldon

This paper investigates the shrinkage and thermal effects of an ultra-high performance concrete (UHPC) mixture proposed for use as an overlay material for concrete bridge decks. In this study, early-age and longer-term shrinkage tests were performed on the locally produced UHPC. Thermal and shrinkage effects in normal strength concrete slabs overlaid with UHPC were also observed. Early-age shrinkage testing showed that approximately 55% of the strain occurred in the plastic state and may not contribute to bond stresses since the elastic modulus of the UHPC should be small at such early ages. Thickness of the substrate and amount of reinforcing steel were important factors for shrinkage in the slabs. The thickest slab experienced greater shrinkage than thinner slabs. Comparing this slab to a thinner slab with the same reinforcement indicated that reinforcement ratio is more important than the area of steel.


2020 ◽  
Vol 10 (2) ◽  
pp. 153-164
Author(s):  
Hui Zheng ◽  
Dongdong Zhou ◽  
Xinfeng Yin ◽  
Lei Wang

Ultra-high-performance concrete (UHPC) material, a new type of cement-based composite material, is usually employed in the bridge engineering. The transfer and anchorage length of steel strand in UHPC material is different from that in ordinary concrete; nevertheless, few design standards are found that how to anchor the transfer and anchoring length of steel strand in UHPC material under normal curing. Through central pull-out test under the different conditions of protective layer thickness and embedded length, the load-slip curves, failure modes, and bond strength of 36 UHPC material specimens under normal curing were studied. The experimental results showed that the ultimate bond stress between UHPC material and steel strand under natural curing conditions is 7.01∼11.68 MPa. When the compressive strength of cube was 157 MPa; the bond strength under natural curing was smaller than that under thermal curing; when the thickness of the protective layer of steel strand with a diameter of 15.2 mm is greater than 30 mm, it had a little influence on bond strength. The regression analysis of the test results based on the experimental results proves that the recommended formulas for the design of transfer length and anchorage length of steel strand in UHPC material were in great agreement with the results of published studies.


Sign in / Sign up

Export Citation Format

Share Document