Performance of a precast concrete beam-to-beam connection subject to reversed cyclic loading

2005 ◽  
Vol 27 (9) ◽  
pp. 1392-1407 ◽  
Author(s):  
Hasan Husnu Korkmaz ◽  
Tugrul Tankut
PCI Journal ◽  
1998 ◽  
Vol 43 (6) ◽  
pp. 58-71 ◽  
Author(s):  
Rosa M. Vasconez ◽  
Antoine E. Naaman ◽  
James K. Wight

2020 ◽  
Vol 23 (13) ◽  
pp. 2822-2834
Author(s):  
Xian Rong ◽  
Hongwei Yang ◽  
Jianxin Zhang

This article investigated the seismic performance of a new type of precast concrete beam-to-column joint with a steel connector for easy construction. Five interior beam-to-column joints, four precast concrete specimens, and one monolithic joint were tested under reversed cyclic loading. The main variables were the embedded H-beam length, web plate or stiffening rib usage, and concrete usage in the connection part. The load–displacement hysteresis curves were recorded during the test, and the behavior was investigated based on displacement ductility, deformability, skeleton curves, stiffness degradation, and energy dissipation capacity. The results showed that the proposed beam-to-column joint with the web plate in the steel connector exhibited satisfactory behavior in terms of ductility, load capacity, and energy dissipation capacity under reversed cyclic loading, and the performance was ductile because of the yielding of the web plate. Therefore, the proposed joint with the web plate could be used in high seismic regions. The proposed joint without the web plate exhibited similar behavior to the monolithic specimen, indicating that this joint could be used in low or moderate seismic zones. Furthermore, the utilization of the web plate was vital to the performance of this system.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Manrong Song ◽  
Jiaxuan He ◽  
Yuan Liu ◽  
Hang Zhang ◽  
Chenjun Ge ◽  
...  

Precast concrete structure is the building industrialization of the sure route. It can realize the construction process of low energy consumption and low emission and effectively meet the green development requirements of the construction industry. Based on prestressing technique, the connections of the precast concrete structure obtain prestress producing integrate joints and continuous frames, which improve the seismic safety and are applied widely in the earthquake area. To study seismic behavior of prestressed fabricated concrete frame structure, the experiments on the concrete frame under dynamic loading and low reversed cyclic loading were carried out. The single-span three-story prestressed fabricated concrete frame can accurately represent the load-carrying capability and the failure mechanism of multistory frame. Results of the study show that experimental specimens have good behaviors such as full hysteresis curves, proper displacement restoring capacity, and energy dissipation; the maximum interlayer drift ratio arrives 0.27% which has no damage to the frame in small earthquakes subjected to the 102 gal peak ground acceleration; the frame is repairable in moderate earthquakes when the maximal interlayer drift ratio arrives 0.73% subjected to the 204 gal peak ground acceleration; plastic hinges appeared at the ends of beam under low reversed cyclic loading firstly where the section curvature ductility factor ranges from 3.64 to 5.62; biaxial compression is acquired at beam-column joints with the help of column axial force and horizontal prestressing force; the beam fails before the column in the prestressed fabricated concrete frame at interlayer drift ratio between 1.56% and 2.56%.


2012 ◽  
Vol 626 ◽  
pp. 85-89 ◽  
Author(s):  
Kay Dora Abdul Ghani ◽  
Nor Hayati Hamid

The experimental work on two full-scale precast concrete beam-column corner joints with corbels was carried out and their seismic performance was examined. The first specimen was constructed without steel fiber, while second specimen was constructed by mixed up steel fiber with concrete and placed it at the corbels area. The specimen were tested under reversible lateral cyclic loading up to ±1.5% drift. The experimental results showed that for the first specimen, the cracks start to occur at +0.5% drifts with spalling of concrete and major cracks were observed at corbel while for the second specimen, the initial cracks were observed at +0.75% with no damage at corbel. In this study, it can be concluded that precast beam-column joint without steel fiber has better ductility and stiffness than precast beam-column joint with steel fiber. However, precast beam-column joint with steel fiber has better energy dissipation and fewer cracks at corbel as compared to precast beam-column joint without steel fiber.


Sign in / Sign up

Export Citation Format

Share Document