Flexural behaviour of indeterminate concrete beams reinforced with FRP bars

2008 ◽  
Vol 30 (9) ◽  
pp. 2370-2380 ◽  
Author(s):  
R.J. Gravina ◽  
S.T. Smith
1998 ◽  
Vol 7 (5) ◽  
pp. 096369359800700 ◽  
Author(s):  
M. Konsta-Gdoutos ◽  
CH Karayiannis

An experimental study of the behaviour of concrete beams reinforced with fibre reinforced plastic (FRP) bars in three-point bending was undertaken. The load-deflection response was monitored throughout the test. The results from the flexural tests on FRP reinforced concrete beams were compared with those obtained with steel reinforcement. The failure mechanisms and the ultimate loads and displacements for the FRP and steel reinforcement of concrete were analysed and compared.


2022 ◽  
pp. 136943322110542
Author(s):  
Nagajothi Subramanian ◽  
Elavenil Solaiyan ◽  
Angalaeswari Sendrayaperumal ◽  
Natrayan Lakshmaiya

The paper presents the experimental investigations on the flexural behaviour of geopolymer concrete beams reinforced with Basalt Fibre Reinforced Polymer (BFRP)/Glass Fibre Reinforced Polymer (GFRP) rebars and the effect of inclusion of the new adhesively bonded BFRP/GFRP stirrups. M30 grade geopolymer and conventional concrete beams with the dimension of 100 × 160 × 1700 mm were cast to investigae the flexural behaviour of BFRP/GFRP and steel bars. This study also examined the mode of failure, deflection behaviour, curvature moment capacity, crack width, pattern, propagation, strains and average crack width of the BFRP/GFRP bars with stirrups in the geopolymer concretes using a four-point static bending test. The results were compared to that of conventional steel-reinforced concrete, and it was found that the Basalt and Glass reinforced polymer beams demonstrated premature failure and sudden shear failure. Further, the FRP bars exhibited higher mid-span deflection, crack width and crack propagation than steel bars. Crack spacing of the FRP bars decreased with an increase in the number of cracks. The correlation between the load and the deflection behaviour of the beams was determined using statistical analysis of multi variables regression.


Structures ◽  
2021 ◽  
Vol 32 ◽  
pp. 1543-1552
Author(s):  
A.S. Elamary ◽  
I.A. Sharaky ◽  
M. Alqurashi

2018 ◽  
Vol 161 ◽  
pp. 587-597 ◽  
Author(s):  
Haitang Zhu ◽  
Shengzhao Cheng ◽  
Danying Gao ◽  
Sheikh M. Neaz ◽  
Chuanchuan Li

2004 ◽  
Vol 10 (3) ◽  
pp. 209-215
Author(s):  
Hau Yan Leung

Although much research on concrete beams reinforced with fibre‐reinforced polymer (FRP) rods has been conducted in recent years, their use still does not receive the attention it deserves from practicising engineers. This is attributed to the fact that FRP is brittle in nature and the collapse of FRP‐reinforced concrete member may be catastrophic. A rational beam design can incorporate a hybrid use of FRP rods and steel rods. Current design codes only deal with steel‐reinforced or FRP‐reinforced concrete members. Therefore in this study some design charts and equations for concrete beam sections reinforced with FRP rods and steel rebars were generated. Results from the theoretical derivations agreed well with experimental data.


2021 ◽  
Author(s):  
Kokilan Sathiyamoorthy

Shear and flexural behaviour of lightweight self-consolidating concrete (LWSCC) beams made of slag aggregates were investigated. Shear reinforced LWSCC beams showed similar shear behaviour compared to their non-shear reinforced counterparts until the formation of diagonal cracks but higher ultimate shear resistance and ductility. Compared to normal weight self-consolidating concrete (SCC) ones, non-shear reinforced LWSCC beams showed lower post-cracking shear resistance. Shear strength of LWSCC/SCC beams increased with the decrease of shear span to depth ratio. LWSCC beams showed higher number of cracks and wider crack width at failure than their SCC counterparts. LWSCC beams developed higher number of cracks with wider crack width at failure compared with their SCC counterparts. American, Canadian and British Codes were conservative in predicting shear strength of shear/non-shear reinforced LWSCC beams. LWSCC beams (with slag aggregate) showed good shear resistance compared with those made of other types of aggregates besides satisfactory flexural performance.


Author(s):  
N. Anand ◽  
A. Diana Andrushia ◽  
Mervin Ealiyas Mathews ◽  
Tattukolla Kiran ◽  
Dinesh Lakshmanan Chandramohan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document