Optimal design of an inerter isolation system considering the soil condition

2019 ◽  
Vol 196 ◽  
pp. 109324 ◽  
Author(s):  
Zhipeng Zhao ◽  
Qingjun Chen ◽  
Ruifu Zhang ◽  
Chao Pan ◽  
Yiyao Jiang
2018 ◽  
Vol 25 (7) ◽  
pp. e2168 ◽  
Author(s):  
Jiazeng Shan ◽  
Zhiguo Shi ◽  
Fan Hu ◽  
Jian Yu ◽  
Weixing Shi

2018 ◽  
Vol 875 ◽  
pp. 105-112 ◽  
Author(s):  
Van Quynh Le ◽  
Khac Tuan Nguyen

In order to improve the vibratory roller ride comfort, a multi-objective optimization method based on the improved genetic algorithm NSGA-II is proposed to optimize the design parameters of cab’s isolation system when vehicle operates under the different conditions. To achieve this goal, 3D nonlinear dynamic model of a single drum vibratory roller was developed based on the analysis of the interaction between vibratory roller and soil. The weighted r.m.s acceleration responses of the vertical driver’s seat, pitch and roll angle of the cab are chosen as the objective functions. The optimal design parameters of cab’s isolation system are indentified based on a combination of the vehicle nonlinear dynamic model of Matlab/Simulink and the NSGA - II genetic algorithm method. The results indicate that three objective function values are reduced significantly to improve vehicle ride comfort.


2021 ◽  
Vol 263 (1) ◽  
pp. 5260-5271
Author(s):  
Siddharth Mahajan ◽  
Ahmad Bayat ◽  
Michael Georgalis

A donated land to three universities near a river bank, in an urban setting prompted the universities to commission a state-of-the-art cancer research lab for a prominent scientist. The site ambient vibration was measured around 2000 micro-inches/sec due to nearby highways, light-rail system, and long-term construction staging area, among others. The research lab requirements were dictated by high-end Scanning Electron Microscopes, Transmission Electron Microscopes, etc. The vibration specification for these tools demanded the environment to perform at or below 50 micro-inches/sec, a factor of 40 reduction. Typically, we desire the site ambient to lie below the vibration criterion with some margin to allow for contribution from building MEP sources. This unusual site condition presented on the surface, an impossible design challenge. We developed a multi-pronged design approach that took advantage of the soil condition at the site and designed a specialized foundation for the lab floor, and supplemented it with improvement on the tool-based isolation system by implementing an active isolation system. The final result was that the 40x site vibration was reduced to below lab vibration criterion curve of 50 micro-inches/sec. To our knowledge, the structural and foundation system of this lab is one-of-a-kind in the world.


2001 ◽  
Vol 243 (4) ◽  
pp. 591-599 ◽  
Author(s):  
X. CHEN ◽  
H. QI ◽  
Y. ZHANG ◽  
C. WU

2011 ◽  
Vol 199-200 ◽  
pp. 936-940 ◽  
Author(s):  
Le Van Quynh ◽  
Jian Run Zhang ◽  
Guo Wang Jiao ◽  
Xiao Bo Liu ◽  
Yuan Wang

In recent years, vibration roller market has required increasingly not only on working capacity but also ride comfort. Thus, in order to reduce the effect of vibration to operators, identification and elimination of vibration sources are the most important tasks to achieve optimum design. In this paper, the attention is paid to cab’s low-frequency sloshing analysis and optimal design for cab’s isolation system of vibratory roller. When working, it often exists the problem of cab’s low-frequency sloshing in the direction of forward motion. In order to solve this problem, the dynamic test and simulations analysis are carried out; and the main reasons causing cab’s low-frequency sloshing are found out. The optimization model according to the two points response amplitude in the direction of forward motion on the cab to reach the minimum value in the low frequency range is proposed in this paper. And also, the auxiliary vibrations isolator for solving the low-frequency sloshing in the direction of forward motion is designed.


2011 ◽  
Vol 50-51 ◽  
pp. 135-139
Author(s):  
Tie Yi Zhong ◽  
Chao Yi Xia ◽  
Feng Li Yang

Based on optimization theories, considering soil-structure interaction and running safety, the optimal design model of the seismic isolation system with lead-rubber bearings (LRB) for a simply supported railway beam bridge is established by using the first order optimization method in ANSYS, which the parameters of the isolation bearing are taken as design variables and the maximum moments at the bottom of bridge piers are taken as objective functions. The optimal calculations are carried out under the excitation of three practical earthquake waves respectively. The research results show that the ratio of the stiffness after yielding to the stiffness before yielding has important effect on the structural seismic responses. Through the optimal analysis of isolated bridge system, the optimal design parameters of isolation bearing can be determined properly, and the seismic forces can be reduced maximally as meeting with the limits of relative displacement between pier top and beam, which provides efficient paths and beneficial references for dynamic optimization design of seismic isolated bridges.


Sign in / Sign up

Export Citation Format

Share Document