Study of Parameters Optimization on Seismic Isolated Railway Bridges

2011 ◽  
Vol 50-51 ◽  
pp. 135-139
Author(s):  
Tie Yi Zhong ◽  
Chao Yi Xia ◽  
Feng Li Yang

Based on optimization theories, considering soil-structure interaction and running safety, the optimal design model of the seismic isolation system with lead-rubber bearings (LRB) for a simply supported railway beam bridge is established by using the first order optimization method in ANSYS, which the parameters of the isolation bearing are taken as design variables and the maximum moments at the bottom of bridge piers are taken as objective functions. The optimal calculations are carried out under the excitation of three practical earthquake waves respectively. The research results show that the ratio of the stiffness after yielding to the stiffness before yielding has important effect on the structural seismic responses. Through the optimal analysis of isolated bridge system, the optimal design parameters of isolation bearing can be determined properly, and the seismic forces can be reduced maximally as meeting with the limits of relative displacement between pier top and beam, which provides efficient paths and beneficial references for dynamic optimization design of seismic isolated bridges.

2014 ◽  
Vol 721 ◽  
pp. 464-467
Author(s):  
Tao Fu ◽  
Qin Zhong Gong ◽  
Da Zhen Wang

In view of robustness of objective function and constraints in robust design, the method of maximum variation analysis is adopted to improve the robust design. In this method, firstly, we analyses the effect of uncertain factors in design variables and design parameters on the objective function and constraints, then calculate maximum variations of objective function and constraints. A two-level optimum mathematical model is constructed by adding the maximum variations to the original constraints. Different solving methods are used to solve the model to study the influence to robustness. As a demonstration, we apply our robust optimization method to an engineering example, the design of a machine tool spindle. The results show that, compared with other methods, this method of HPSO(hybrid particle swarm optimization) algorithm is superior on solving efficiency and solving results, and the constraint robustness and the objective robustness completely satisfy the requirement, revealing that excellent solving method can improve robustness.


2013 ◽  
Vol 385-386 ◽  
pp. 163-167
Author(s):  
Long Miao Chen ◽  
Lin Fang Qian ◽  
Rui Xue Zhao

To prolong the life of cartridge retaining pawl and link stopper in a gun cartridge retaining Mechanism, three compression springs stiffness are reduced via design study and optimization design based on dynamic analysis. Presenting the load of shell on a typical stage while entering-bore, differential equations of motion in this mechanism are established. With translational velocity of shell as the design variable, a design research and simulation analysis are made. And the relationship between shell velocity and proper shell-feed is acquired. An evaluation function is built using springs stiffness with preference-selection. With this evaluation function as the optimum objective, spring stiffness as design variables, and proper shell-feed as constraint condition, the minimum of three spring stiffness is obtained after calculation. The results indicate that compared with the original design parameters optimization results, are significantly improved with the stiffness decreased separately by 20.27%, 11.99% and 6.86%.


2013 ◽  
Vol 273 ◽  
pp. 198-202
Author(s):  
Yu Xia Wang

In a given power P, number of teeth than u, input speed and other technical conditions and requirements, find out a set of used a economic and technical indexes reach the optimal design parameters, realize the optimization design of the reducer, This paper determined unipolar standard spur gear reducer design optimization of the design variables, and then determine the objective function, determining constraint function, so as to establish the mathematical model.


2018 ◽  
Vol 8 (10) ◽  
pp. 1910 ◽  
Author(s):  
Sung Hong ◽  
Deog-Jae Hur

Herein, the behavior of a rolling type seismic isolation system with a position restoring device (PRD) is investigated, for alleviating problems such as rapid convergence and position restoration. The equation of motion is derived by modeling the behavior of the seismic isolation system, and the seismic characteristics according to the design variables of the PRD are investigated through numerical analysis. The vibration characteristics of the equation of motion show nonlinearity and depend on different variables. Numerical analysis was performed by using the fourth and fifth order Runge–Kutta method, and the vibration characteristics were analyzed with respect to the design parameters in the rolling type seismic isolation system with PRD, and compared to a model without PRD. In the model with PRD, numerical results show that the vibration suppression capability of the earthquake and the position restoration after disturbance are improved compared to those of the model without PRD. In addition, the rolling type seismic isolation system had nonlinear characteristics at specific frequencies, where the response increases suddenly and harmonics occur. This phenomenon can be controlled by the ratio of mass to stiffness and the damping coefficient, showing that the mount system can be designed to avoid resonance through optimal design.


Author(s):  
Zijian Guo ◽  
Tanghong Liu ◽  
Wenhui Li ◽  
Yutao Xia

The present work focuses on the aerodynamic problems resulting from a high-speed train (HST) passing through a tunnel. Numerical simulations were employed to obtain the numerical results, and they were verified by a moving-model test. Two responses, [Formula: see text] (coefficient of the peak-to-peak pressure of a single fluctuation) and[Formula: see text] (pressure value of micro-pressure wave), were studied with regard to the three building parameters of the portal-hat buffer structure of the tunnel entrance and exit. The MOPSO (multi-objective particle swarm optimization) method was employed to solve the optimization problem in order to find the minimum [Formula: see text] and[Formula: see text]. Results showed that the effects of the three design parameters on [Formula: see text] were not monotonous, and the influences of[Formula: see text] (the oblique angle of the portal) and [Formula: see text] (the height of the hat structure) were more significant than that of[Formula: see text] (the angle between the vertical line of the portal and the hat). Monotonically decreasing responses were found in [Formula: see text] for [Formula: see text] and[Formula: see text]. The Pareto front of [Formula: see text] and[Formula: see text]was obtained. The ideal single-objective optimums for each response located at the ends of the Pareto front had values of 1.0560 for [Formula: see text] and 101.8 Pa for[Formula: see text].


2021 ◽  
Vol 11 (7) ◽  
pp. 3017
Author(s):  
Qiang Gao ◽  
Siyu Gao ◽  
Lihua Lu ◽  
Min Zhu ◽  
Feihu Zhang

The fluid–structure interaction (FSI) effect has a significant impact on the static and dynamic performance of aerostatic spindles, which should be fully considered when developing a new product. To enhance the overall performance of aerostatic spindles, a two-round optimization design method for aerostatic spindles considering the FSI effect is proposed in this article. An aerostatic spindle is optimized to elaborate the design procedure of the proposed method. In the first-round design, the geometrical parameters of the aerostatic bearing were optimized to improve its stiffness. Then, the key structural dimension of the aerostatic spindle is optimized in the second-round design to improve the natural frequency of the spindle. Finally, optimal design parameters are acquired and experimentally verified. This research guides the optimal design of aerostatic spindles considering the FSI effect.


Author(s):  
Hoang Nam Phan ◽  
Fabrizio Paolacci ◽  
Silvia Alessandri ◽  
Phuong Hoa Hoang

Liquid steel storage tanks are strategic structures for industrial facilities and have been widely used both in nuclear and non-nuclear power plants. Typical damage to tanks occurred during past earthquakes such as cracking at the bottom plate, elastic or elastoplastic buckling of the tank wall, failure of the ground anchorage system, and sloshing damage around the roof, etc. Due to their potential and substantial economic losses as well as environmental hazards, implementations of seismic isolation and energy dissipation systems have been recently extended to liquid storage tanks. Although the benefits of seismic isolation systems have been well known in reducing seismic demands of tanks; however, these benefits have been rarely investigated in literature in terms of reduction in the probability of failure. In this paper, A vulnerability-based design approach of a sliding concave bearing system for an existing elevated liquid steel storage tank is presented by evaluating the probability of exceeding specific limit states. Firstly, nonlinear time history analyses of a three-dimensional stick model for the examined case study are performed using a set of ground motion records. Fragility curves of different failure modes of the tank are then obtained by the well-known cloud method. In the following, a seismic isolation system based on concave sliding bearings is proposed. The effectiveness of the isolation system in mitigating the seismic response of the tank is investigated by means of fragility curves. Finally, an optimization of design parameters for sliding concave bearings is determined based on the reduction of the tank vulnerability or the probability of failure.


Author(s):  
Myung-Jin Choi ◽  
Min-Geun Kim ◽  
Seonho Cho

We developed a shape-design optimization method for the thermo-elastoplasticity problems that are applicable to the welding or thermal deformation of hull structures. The point is to determine the shape-design parameters such that the deformed shape after welding fits very well to a desired design. The geometric parameters of curved surfaces are selected as the design parameters. The shell finite elements, forward finite difference sensitivity, modified method of feasible direction algorithm and a programming language ANSYS Parametric Design Language in the established code ANSYS are employed in the shape optimization. The objective function is the weighted summation of differences between the deformed and the target geometries. The proposed method is effective even though new design variables are added to the design space during the optimization process since the multiple steps of design optimization are used during the whole optimization process. To obtain the better optimal design, the weights are determined for the next design optimization, based on the previous optimal results. Numerical examples demonstrate that the localized severe deviations from the target design are effectively prevented in the optimal design.


2013 ◽  
Vol 655-657 ◽  
pp. 435-444
Author(s):  
Dong Xia Niu ◽  
Xian Yi Meng ◽  
Ai Hua Zhu

In the case of multiple loading conditions, a moving blade adjustable axial flow fan structure parameters are optimized by ANSYS. It is to achieve greater efficiency and less noise for the optimization goal. For different conditions, establish efficiency, noise comprehensive objective function using weighted coefficient method. Select impeller diameter, the wheel hub ratio, leaf number, lift coefficient, speed as design variables, Choose blade installation Angle, the wheel hub place dynamic load coefficient, cascade consistency, allowable safety coefficient as optimization of the state variables. Design variables contain continuous variables and discrete variable. Through the optimization method, we get the optimal structure parameters finally. And at the same time get the corresponding optimal blade installation Angle,under different working conditions.


2013 ◽  
Vol 765-767 ◽  
pp. 176-180
Author(s):  
Rong Chuang Zhang ◽  
Ao Xiang Liu ◽  
Jun Wang ◽  
Wan Shan Wang

In the optimization design of the gear hobbing machine bed, the finite element model is build and the static analysis and vibration modal analysis are performed. Then sensitivity analysis is used to gain the main design parameters which influence the bed property most. Furthermore, the multi-objective optimization design of the bed is performed in ANSYS Workbench with these design parameters as the design variables. At last, after all optimum proposals are showed up, Analytic Hierarchy Process is used to determine the weighting coefficient, and the most optimal solution is found out. As a result, the dynamic and static performances of the machine bed are improved under control of the machine bed mass.


Sign in / Sign up

Export Citation Format

Share Document