Comparative evaluation of MFP and RBF neural networks’ ability for instant estimation of r/c buildings’ seismic damage level

2019 ◽  
Vol 197 ◽  
pp. 109436 ◽  
Author(s):  
Konstantinos Morfidis ◽  
Konstantinos Kostinakis
Author(s):  
Konstantinos Morfidis ◽  
Konstantinos Kostinakis

The angle of seismic excitation is a significant factor of the seismic response of RC buildings. The procedure required for the calculation of the angle for which the potential seismic damage is maximized (critical angle) contains multiple nonlinear time history analyses using in each one of them different angles of incidence. Moreover, the seismic codes recommend the application of more than one accelerograms for the evaluation of seismic response. Thus, the whole procedure becomes time consuming. Herein, a method to reduce the time required for the estimation of the critical angle based on Multilayered Feedforward Perceptron Neural Networks is proposed. The basic idea is the detection of cases in which the critical angle increases the class of seismic damage compared to the class which arises from the application of the seismic motion along the buildings’ structural axes. To this end, the problem is expressed and solved as Pattern Recognition problem. As inputs of networks the ratios of seismic parameters’ values along the two horizontal seismic records' components, as well as appropriately chosen structural parameters, were used. The results of analyses show that the neural networks can reliably detect the cases in which the calculation of the critical angle is essential.


Author(s):  
Volodymyr Shymkovych ◽  
Sergii Telenyk ◽  
Petro Kravets

AbstractThis article introduces a method for realizing the Gaussian activation function of radial-basis (RBF) neural networks with their hardware implementation on field-programmable gaits area (FPGAs). The results of modeling of the Gaussian function on FPGA chips of different families have been presented. RBF neural networks of various topologies have been synthesized and investigated. The hardware component implemented by this algorithm is an RBF neural network with four neurons of the latent layer and one neuron with a sigmoid activation function on an FPGA using 16-bit numbers with a fixed point, which took 1193 logic matrix gate (LUTs—LookUpTable). Each hidden layer neuron of the RBF network is designed on an FPGA as a separate computing unit. The speed as a total delay of the combination scheme of the block RBF network was 101.579 ns. The implementation of the Gaussian activation functions of the hidden layer of the RBF network occupies 106 LUTs, and the speed of the Gaussian activation functions is 29.33 ns. The absolute error is ± 0.005. The Spartan 3 family of chips for modeling has been used to get these results. Modeling on chips of other series has been also introduced in the article. RBF neural networks of various topologies have been synthesized and investigated. Hardware implementation of RBF neural networks with such speed allows them to be used in real-time control systems for high-speed objects.


2021 ◽  
Vol 54 (1-2) ◽  
pp. 102-115
Author(s):  
Wenhui Si ◽  
Lingyan Zhao ◽  
Jianping Wei ◽  
Zhiguang Guan

Extensive research efforts have been made to address the motion control of rigid-link electrically-driven (RLED) robots in literature. However, most existing results were designed in joint space and need to be converted to task space as more and more control tasks are defined in their operational space. In this work, the direct task-space regulation of RLED robots with uncertain kinematics is studied by using neural networks (NN) technique. Radial basis function (RBF) neural networks are used to estimate complicated and calibration heavy robot kinematics and dynamics. The NN weights are updated on-line through two adaptation laws without the necessity of off-line training. Compared with most existing NN-based robot control results, the novelty of the proposed method lies in that asymptotic stability of the overall system can be achieved instead of just uniformly ultimately bounded (UUB) stability. Moreover, the proposed control method can tolerate not only the actuator dynamics uncertainty but also the uncertainty in robot kinematics by adopting an adaptive Jacobian matrix. The asymptotic stability of the overall system is proven rigorously through Lyapunov analysis. Numerical studies have been carried out to verify efficiency of the proposed method.


2019 ◽  
Vol 41 (13) ◽  
pp. 3612-3625 ◽  
Author(s):  
Wang Qian ◽  
Wang Qiangde ◽  
Wei Chunling ◽  
Zhang Zhengqiang

The paper solves the problem of a decentralized adaptive state-feedback neural tracking control for a class of stochastic nonlinear high-order interconnected systems. Under the assumptions that the inverse dynamics of the subsystems are stochastic input-to-state stable (SISS) and for the controller design, Radial basis function (RBF) neural networks (NN) are used to cope with the packaged unknown system dynamics and stochastic uncertainties. Besides, the appropriate Lyapunov-Krosovskii functions and parameters are constructed for a class of large-scale high-order stochastic nonlinear strong interconnected systems with inverse dynamics. It has been proved that the actual controller can be designed so as to guarantee that all the signals in the closed-loop systems remain semi-globally uniformly ultimately bounded, and the tracking errors eventually converge in the small neighborhood of origin. Simulation example has been proposed to show the effectiveness of our results.


Sign in / Sign up

Export Citation Format

Share Document