Experimental and analytical research on the flexural behaviour of steel–ECC composite beams under negative bending moments

2020 ◽  
Vol 210 ◽  
pp. 110309 ◽  
Author(s):  
Jiansheng Fan ◽  
Shuangke Gou ◽  
Ran Ding ◽  
Jun Zhang ◽  
Zhengjie Shi
Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1359
Author(s):  
Choman Salih ◽  
Allan Manalo ◽  
Wahid Ferdous ◽  
Rajab Abousnina ◽  
Peng Yu ◽  
...  

Alternative sleeper technologies have been developed to address the significant need for the replacement of deteriorating timber railway sleepers. The review of the literature indicates that the railway sleepers might fail while in service, despite passing the evaluation tests of the current composite sleeper standards which indicated that these tests do not represent in situ sleeper on ballast. In this research, a new five-point bending test is developed to evaluate the flexural behaviour of timber replacement sleeper technologies supported by ballast. Due to the simplicity, acceptance level of evaluation accuracy and the lack of in-service behaviour of alternative sleepers, this new testing method is justified with the bending behaviour according to the Beam on Elastic Foundation theory. Three timber replacement sleeper technologies—plastic, synthetic composites and low-profile prestressed concrete sleepers in addition to timber sleepers—were tested under service loading condition to evaluate the suitability of the new test method. To address the differences in the bending of the sleepers due to their different modulus of elasticities, the most appropriate material for the middle support was also determined. Analytical equations of the bending moments with and without middle support settlement were also developed. The results showed that the five-point static bending test could induce the positive and negative bending moments experienced by railway sleepers under a train wheel load. It was also found that with the proposed testing spans, steel-EPDM rubber is the most suitable configuration for low bending modulus sleepers such as plastic, steel-neoprene for medium modulus polymer sleepers and steel-steel for very high modulus sleepers such as concrete. Finally, the proposed bending moment equations can precisely predict the flexural behaviour of alternative sleepers under the five-point bending test.


2020 ◽  
pp. 136943322098166
Author(s):  
Weiwei Lin

In this study, straight composite steel-concrete beams were tested to investigate their mechanical performance under combined negative bending and torsional moments. Two specimens were used in this study, and different ratios between the applied negative bending and torsional moments were induced. Load and deflection relationships, strain development on the steel main girder and shear connectors (stud), and the slip development on the steel-concrete interface were recorded in the test and reported in this paper. The results indicate that increase of torsional moment will result in the significant decrease of the load-carrying capacities (e.g. yield load and ultimate load) of the specimens. It was also found that the normal strains of stud shear connectors in such beams are very large and non-negligible compared to their shear strains. In addition, the maximum interface slip was found occurring at around the 1/4 span, and the support conditions and serious crack of the concrete were considered to be the main causes. The research results obtained in this study can provide references for the design and analysis of steel-concrete composite beams subjected to the combined negative bending and torsional moments.


2021 ◽  
Vol 237 ◽  
pp. 112217
Author(s):  
Yi Zhao ◽  
Xuhong Zhou ◽  
Yuanlong Yang ◽  
Jiepeng Liu ◽  
Yohchia Frank Chen

2018 ◽  
Vol 11 (2) ◽  
pp. 331-356 ◽  
Author(s):  
A. D. PIASSI ◽  
J. V. DIAS ◽  
A. F. G. CALENZANI ◽  
F. C. C. MENANDRO

Abstract In the region of negative bending moments of continuous and semi-continuous steel and concrete composite beams, the inferior portion of the steel section is subjected to compression while the top flange is restricted by the slab, which may cause a global instability limit state know as lateral distortional buckling (LDB) characterized by a lateral displacement and rotation of the bottom flange with a distortion of the section’s web when it doesn’t have enough flexural rigidity. The ABNT NBR 8800:2008 provides an approximate procedure for the verification of this limit state, in which the resistant moment to LDB is obtained from the elastic critical moment in the negative moment region. One of the essential parameters for the evaluation of the critical moment is the composite beam’s rotational rigidity. This procedure is restricted only to to steel and concrete composite beams with sections that have plane webs. In this paper, an equation for the calculation of the rotational rigidity of cellular sections was developed in order to determine the LDB elastic critical moment. The formulation was verified by numerical analyses performed in ANSYS and its efficiency was confirmed. Finally, the procedure described in ABNT NBR 8800:2008 for the calculation of the critical LDB moment was expanded to composite beams with cellular sections in a numerical example with the appropriate modifications in geometric properties and rotational rigidity.


2012 ◽  
Vol 166-169 ◽  
pp. 1023-1028 ◽  
Author(s):  
Li Hua Chen ◽  
Qi Liang Jin ◽  
Haiyu Si

Static load tests were conducted on two reversed-loading simply supported and two continuous outer-plated steel-concrete composite beams to study the formation and development of cracks in such beams under negative bending moment. The test results show that based on the plane section assumption, it is an effective and economical method to calculate the cracking moment of the composite beams assuming a rectangular stress block for concrete in tension zone. Considering the structural features of outer-plated steel-concrete composite beams, the formula for calculating crack width of concrete flange of outer-plated steel-concrete composite beams is discussed and presented, and the calculated values of crack width agree well with the experimental results.


1980 ◽  
Vol 7 (1) ◽  
pp. 114-124
Author(s):  
S. C. Shrivastava ◽  
R. G. Redwood ◽  
P. J. Harris ◽  
A. A. Ettehadieh

A study is made of the behaviour of open web steel joists having both top and bottom chords connected to a column when the end is subjected to negative bending moments. Six tests are described, three of which examine the behaviour with typical standard connections as detailed and supplied by manufacturers; the other three involve modifications to these connections in an attempt to minimize connection eccentricity. It is shown that the eccentricities inherent in the standard connections examined can have a significant influence on the behaviour and strength of a joist, whereas if the eccentricities are eliminated, reasonably predictable behaviour, based upon the member resistances under axial loads, can be achieved. These results are examined in relation to tie joists, which are designed to be simply supported under gravity load but have the bottom chord extended and attached to a column, and also in relation to joists designed as framing members.


2012 ◽  
Vol 13 (2) ◽  
pp. 123-137 ◽  
Author(s):  
Deng-Hu Jing ◽  
Shuang-Yin Cao ◽  
Lei Shi

Sign in / Sign up

Export Citation Format

Share Document