Experimental investigation of axial loaded circular steel tube short columns filled with manufactured sand concrete

2020 ◽  
Vol 221 ◽  
pp. 111033
Author(s):  
Minsheng Guan ◽  
Chunqing Wei ◽  
Ying Wang ◽  
Zhichao Lai ◽  
Qian Xiao ◽  
...  
2011 ◽  
Vol 94-96 ◽  
pp. 1205-1210
Author(s):  
Zhao Liu ◽  
Jun Hai Zhao

The mechanical behavior and ultimate bearing capacity of the circular bar-reinforced concrete filled steel tube (BRCFST) short columns under axial compression are analyzed in this paper based on the unified strength theory. Considering the restriction effect of steel tube and hoop bar on concrete, the calculation formula of bearing capacity of the column is deduced. Parametric studies are carried out to evaluate the effects of intermediate principal stresses, diameter-thickness ratio of steel tube and the stirrup ratio on the bearing capacity of the column. A good agreement is reached by comparing the results calculated by the formula with the test results. It is concluded that the unified strength theory is applicable in the theoretical analyses of the BRCFST columns.


2010 ◽  
Vol 163-167 ◽  
pp. 4542-4545 ◽  
Author(s):  
Xin Zhong Li ◽  
Xue Ying Wei ◽  
Jun Hai Zhao

This paper presents the theoretical and experimental results of concrete-filled steel tube columns subjected to axially compression. A total of 6 specimens with outer square sections reinforced by inner cicular steel tube were constructed for experimental investigation. The ultimate strengths of the columns from tests were obtained. The theoretical strengths of the columns were also investigated based on unified strength theory, and compared with the test results. Good agreement can be observed from the comparison.


2011 ◽  
Vol 255-260 ◽  
pp. 151-156 ◽  
Author(s):  
Zhao Qiang Zhang ◽  
Yong Yao

By introducing the reduction coefficient of concrete strength and the equivalent restriction reduction coefficient,the non-uniform confinement force of square steel tube to its core concrete is turned to that of equivalent circular steel tube. Then the ultimate load calculation formula for the solid multibarrel tube-confined concrete short columns (CHS inner and SHS outer) is derived based on the Unified Strength Theory(UST),in which the double restriction effect and the decrease of longitudinal stress because of the hoop tensile tension are considered. The influence of intermediate principal stress on the ultimate load is studied and the failure mechanism is discussed. The applicability of the formulas is testified and the results show that the formulas have significance in exerting material potential.


Author(s):  
Guochang Li ◽  
Zhichang Zhan ◽  
Zhijian Yang ◽  
Yu Yang

The concrete-filed square steel tube with inner I-shaped CFRP profiles short columns under bi-axial eccentric load were investigated by the finite element analysis software ABAQUS. The working mechanism of the composite columns which is under bi-axial eccentric load are investigated by using the stress distribution diagram of steel tube concrete and the I-shaped CFRP profiles. In this paper, the main parameters; eccentric ratio, steel ratio, steel yield strength, concrete compressive strength and CFRP distribution rate of the specimens were investigated to know the mechanical behavior of them. The interaction between the steel tube and the concrete interface at different characteristic points of the composite columns were analyzed. The results showed that the ultimate bearing capacity of the concrete-filed square steel tube with inner I-shaped CFRP profiles short columns under bi-axial eccentric load decrease with the increase of eccentric ratio, the ultimate bearing capacity of the composite columns increase with the increase of steel ratio, steel yield strength, concrete compressive strength and CFRP distribution rate. The contact pressure between the steel tube and the concrete decreased from the corner zone to the flat zone, and the contact pressure decreased from the mid-height cross section to other sections.


Sign in / Sign up

Export Citation Format

Share Document