scholarly journals Full scale finite element modelling and analysis of the 17th-century warship Vasa: A methodological approach and preliminary results

2021 ◽  
Vol 231 ◽  
pp. 111765
Author(s):  
R. Afshar ◽  
N. Alavyoon ◽  
A. Ahlgren ◽  
E.K. Gamstedt
Author(s):  
Wenchao Zhang ◽  
Justin Tuohy

Unbonded flexible pipe has a proven track record in the offshore oil and gas industry for more than 20 years. The product is synonymous with the use of floating production systems spanning the water column and connecting subsea structures to facilitate the retrieval of hydrocarbons, provision of water injection systems and the export of processed or semi-processed fluids to main trunk pipelines or onshore. Unbonded Flexible pipe is a technically complex multi-layer structure of helically wound metallic wires and tapes and extruded thermoplastics. In 1996 Wellstream was awarded a major contract for the supply of flexible risers and flowlines as part of the Norsk Hydro Troll Olje Gas Province Development located in 350m water depth 80km west of Bergen. The development consists of two main fields, Troll East (31/3 and 31/6) and Troll West (31/2) which together have an estimated production life in excess of 50 years, making it one of the worlds largest offshore developments. Norsk Hydro is responsible for the development and operation of the production facilities. The scope of supply included 15-inch internal diameter, 213 barg design pressure, dynamic risers for the export of oil and gas from the platform to shore. At contract award, Wellstream was finalising the location of their European Manufacturing site, a facility which would have the capability of manufacturing unbonded flexible pipe with external diameters up to 24-inches. The design, manufacture and qualification of a large diameter oil and gas export riser for service in the Norwegian sector of the North Sea, considered to be one of the most severe environments in the offshore industry, provided unique challenges and attributes. These risers have now been in service for over two year, following an extensive qualification programme. This paper provides an insight into the integrated approach adopted during qualification with the successful application of finite element technology to aid full-scale testing. During a full-scale test program a finite element simulation of a 15 metre long prototype pipe was performed with special emphasis on the evaluation of contact forces between the flexible pipe and a bend limiting structure. The finite element analysis program package ANSYS is chosen for this simulation due to its special feature of contact/target elements. The paper illustrates that the use of Finite Element Modelling is indeed capable of predicting the observed behaviour of prototype risers, which are subjected to a series of dynamic load cases, in a Dynamic Test Rig (DTR). Finally, the paper concludes that focus should now be given to the advantages of using finite element tools that are verified by full scale testing to reduce development costs and schedules.


1995 ◽  
Vol 8 (3) ◽  
pp. 211-228 ◽  
Author(s):  
N.G. Pegg ◽  
L.E. Gilroy ◽  
R. Kumar

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Ameze Big-Alabo

AbstractThe study presents the development of a 3D Finite Element modelling (FEM) technique for a uni-coupled Ge/SiGe superlattice-based module configuration. The methodological approach involved the development of the geometrical design of the Ge/SiGe – based Thermoelectric generator (TEG), defining the thermoelectric material properties and boundary conditions and then implementation of the governing equations to obtain an approximate solution via meshing of the TEG module. The developed FEM was then used to optimize the geometry of the TEG with the aim of reducing the contact resistance for improved performances. One way to achieve this is to reduce the thickness of the silicon substrate. Thus by reducing the thickness of the substrate, the thermal losses in the system will be minimized. Secondly, by increasing the superlattice heights, the output voltage also increased and given the anisotropic nature of the superlattice, it was inferred that the optimal voltage measurements can be obtained at the surface of the superlattice which yields the maximum leg height. The relevance of this study is that the FEM allows the simulation of the TEG module for different real-world conditions that would otherwise be expensive and time-consuming to investigate experimentally. It also gives insight to the temperature and voltage distribution of the TEG module under varying operating conditions.


2012 ◽  
Vol 13 (4) ◽  
pp. 578-598 ◽  
Author(s):  
Alvaro González ◽  
Misko Cubrinovski ◽  
David Alabaster ◽  
Guillermo Thenoux

2018 ◽  
Vol 196 ◽  
pp. 117-126 ◽  
Author(s):  
M. Oudjene ◽  
E.M. Meghlat ◽  
H. Ait-Aider ◽  
P. Lardeur ◽  
M. Khelifa ◽  
...  

Author(s):  
Jacob Dybwad ◽  
Rikard To¨rnqvist ◽  
Erling O̸stby ◽  
Christian Thaulow

The purpose of the present paper is to present results from analyses of ductile tearing of biaxially loaded pipes subjected to large scale yielding. The paper deals with three dimensional finite element modelling of pipes with a circumferentially orientated surface crack, where the analyses aim to reproduce the crack propagation behaviour of six full scale bend tests of x-65 seamless pipes with different levels of internal overpressure. The tests were performed as a part of the joint industry project Fracture Control - Offshore Pipelines. Ductile tearing is taken into account by using the Gurson-Tvergaard-Needleman formulation, where calibration of the material model parameters is done by reproducing the fracture toughness test of a SENT-specimen of the same material with finite element modelling. The following simulations of the pipes show a good correspondence with the full scale test results, where both the global response and the ductile tearing from the crack are captured. One important result of the study is that the Gurson-Tvergaard-Needleman parameters that were calibrated against the SENT-specimen could successfully be used for the ductile tearing simulation of the full scale pipes.


Sign in / Sign up

Export Citation Format

Share Document