Modelling the experimental seismic out-of-plane two-way bending response of unreinforced periodic masonry panels using a non-linear discrete homogenized strategy

2021 ◽  
Vol 242 ◽  
pp. 112524
Author(s):  
S. Sharma ◽  
L.C. Silva ◽  
F. Graziotti ◽  
G. Magenes ◽  
G. Milani
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Francesco Gabriele ◽  
Mattia Udina ◽  
Lara Benfatto

AbstractThe hallmark of superconductivity is the rigidity of the quantum-mechanical phase of electrons, responsible for superfluid behavior and Meissner effect. The strength of the phase stiffness is set by the Josephson coupling, which is strongly anisotropic in layered cuprates. So far, THz light pulses have been used to achieve non-linear control of the out-of-plane Josephson plasma mode, whose frequency lies in the THz range. However, the high-energy in-plane plasma mode has been considered insensitive to THz pumping. Here, we show that THz driving of both low-frequency and high-frequency plasma waves is possible via a general two-plasmon excitation mechanism. The anisotropy of the Josephson couplings leads to markedly different thermal effects for the out-of-plane and in-plane response, linking in both cases the emergence of non-linear photonics across Tc to the superfluid stiffness. Our results show that THz light pulses represent a preferential knob to selectively drive phase excitations in unconventional superconductors.


2019 ◽  
Vol 817 ◽  
pp. 325-333
Author(s):  
Simonetta Baraccani ◽  
Giorgio Dan ◽  
Angelo Di Tommaso ◽  
Tomaso Trombetti

The analyses of the structural damages detected on the Italian churches after the recent earthquakes (Emilia 2012, Umbria-Marche 2016) highlighted the high vulnerability to the overturning of the façades. The façades collapse mechanisms are strongly dependent on the connection details between orthogonal masonry walls, the windows, the construction techniques and the possible restraining horizontal elements, such as tie-beams, bi-lateral connected roof, etc. Several studies focus on the evaluation of vulnerability of the church façades using different approaches, from global analyses (FEM and /or Discrete Element Methods) of the entire building, to local analyses (linear and non-linear kinematic approaches). The aims of the present paper is to use the method based on capacity spectra to evaluate the vulnerability of the church facades and the optimization of specific devices as tie-rods to improve their seismic behavior. The non-linear approach is now accepted by several standards regarding the evaluation of risks of collapse mechanisms for masonry walls of the facades. Appropriate devices have been considered in order to calibrate the capacity curve and to optimize the interventions. The out of plane rotation of blocks can be modified with various elasto-perfect-plastic tendons with appropriate retentions (while composite materials could be used to preserve integrity of blocks). The tendons can be allocated in proper location and the length of each calibrated to best determine their stiffness. This procedure have been here applied to the study of the façade of Aula Magna S. Lucia of the Bologna University, considering also the problem of the interaction with the structure of the roof.


Author(s):  
Daniele Guarnera ◽  
Erasmo Carrera ◽  
Ibrahim Kaleel ◽  
Alfonso Pagani ◽  
Marco Petrolo

A novel approach for the analysis of the non-linear behavior of bio-structures is presented here. This method is developed in the framework of the Carrera Unified Formulation (CUF), a higher-order 1D theory according to which the kinematics of the problem depends on the arbitrary expansion of the generalized unknowns. Taylor-like (TE) and Lagrange-like expansion functions (LE) are employed to describe the kinematic field along the cross-section and, the finite element method (FEM) is used to formulate the governing equations. In this work, the effects of material nonlinearities are investigated and, the problem is solved by using the Newton-Raphson method. An atherosclerotic plaque of an artery is introduced as a typical bio-structure with complex geometry and studied for both linear and non-linear material cases. The results from the proposed technique highlight the accuracy of the in-plane and out-of-plane stress/strain distributions for different 1D models. The 3D-like accuracy of local effect predictions, the possibility of dealing with complex geometries, and low computational costs of nonlinear analyses make the present formulation appealing for biomechanical applications.


Micromachines ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 8 ◽  
Author(s):  
Jason D. Fowlkes ◽  
Robert Winkler ◽  
Eva Mutunga ◽  
Philip D. Rack ◽  
Harald Plank

A promising 3D nanoprinting method, used to deposit nanoscale mesh style objects, is prone to non-linear distortions which limits the complexity and variety of deposit geometries. The method, focused electron beam-induced deposition (FEBID), uses a nanoscale electron probe for continuous dissociation of surface adsorbed precursor molecules which drives highly localized deposition. Three dimensional objects are deposited using a 2D digital scanning pattern—the digital beam speed controls deposition into the third, or out-of-plane dimension. Multiple computer-aided design (CAD) programs exist for FEBID mesh object definition but rely on the definition of nodes and interconnecting linear nanowires. Thus, a method is needed to prevent non-linear/bending nanowires for accurate geometric synthesis. An analytical model is derived based on simulation results, calibrated using real experiments, to ensure linear nanowire deposition to compensate for implicit beam heating that takes place during FEBID. The model subsequently compensates and informs the exposure file containing the pixel-by-pixel scanning instructions, ensuring nanowire linearity by appropriately adjusting the patterning beam speeds. The derivation of the model is presented, based on a critical mass balance revealed by simulations and the strategy used to integrate the physics-based analytical model into an existing 3D nanoprinting CAD program is overviewed.


Author(s):  
K V Avramov

Equations of motion for a four-degree-of-freedom dynamical system describing the vibrations of a one-disc elastic rotor taking into account gyroscopic moments on a non-linear flexural base are derived. A new version of the multiple scales method is developed and applied to analyse the non-linear dynamics of such a system for different resonances. The steady motions of the rotor are analysed. From the asymptotic analysis, it is shown that out-of-plane motions of the disc exist in the symmetric rotor.


Author(s):  
Ceasar Edward ◽  
Arun Kr. Dev

Abstract Mooring components used for offshore floaters are conventionally designed only to resist axial loads with minimum resistance to bending loads. However, the unprecedented failure of four mooring lines of the Girassol Buoy followed by new modifications of similar buoys exposed the gaps in the existing methodology for failure assessment. The root cause of this failure was attributed to the critical role of out-of-plane (OPB) bending induced fatigue which reduced the fatigue life by 95%. The methodology to incorporate OPB fatigue for failure assessments involves a complex process due to numerous parameters required in the formulations and variability of mooring configurations. One of the most critical steps required to simplify methodology is the formulation of the interlink stiffness, contact stiffness and global stiffness of the chain segment. Currently, the interlink stiffness is derived from full-scale laboratory testing which is expensive and has limitations in generating data for a range of configurations. This paper focuses on producing the interlink stiffness using numerical simulations based on non-linear FE analysis to capture the complex interlink contacts mechanism at the mating surface, elastic-plastic material properties considering non-linear isotropic and non-linear kinematic behaviors during OPB response modes, and compare the numerical models based on available experimental data. The numerical model developed for this research are designed to replicate real case OPB scenarios which induces both rotation and vertical displacements at the mooring connection points. This is different from models studied so far that induces only vertical displacements to study OPB responses which produces conservative results. Further to this, an exhaustive analysis of the key OPB inducing parameters like chain diameter, types, pre-tension, instantaneous tensions, proof loading, residual stress, material properties, boundary condition etc. are required for understanding the underlying failure mechanism. This research also investigates the key OPB parameters and analyze their inter-dependencies, proportionalities and relative sensitivities to understand their overall contribution to OPB failures. This paper presents the first part of this research work which focuses on some of these key aspects to generate the simplified methodology using numerical methods. The findings of this research can be used to generate a database of interlink stiffness for application to a range of mooring configurations and develop mathematical formulations for carrying out a direct assessment of OPB fatigue in combination with tension-tension fatigue failures and proposes potential mechanisms for improving the fatigue life.


Sign in / Sign up

Export Citation Format

Share Document