Flexural behavior of curved steel-plate composite (SC) walls under combined axial compression and cyclic lateral force

2021 ◽  
Vol 245 ◽  
pp. 112919
Author(s):  
Neng Wang ◽  
Feng Zhou ◽  
Yunguang Qu ◽  
Zhengyu Xu ◽  
Zhongcheng Li ◽  
...  
2015 ◽  
Vol 295 ◽  
pp. 817-828 ◽  
Author(s):  
Peter N. Booth ◽  
Amit H. Varma ◽  
Kadir C. Sener ◽  
Sanjeev R. Malushte

2020 ◽  
Vol 10 (3) ◽  
pp. 822 ◽  
Author(s):  
Shatha Alasadi ◽  
Payam Shafigh ◽  
Zainah Ibrahim

The purpose of this paper is to investigate the flexural behavior of over-reinforced concrete beam enhancement by bolted-compression steel plate (BCSP) with normal reinforced concrete beams under laboratory experimental condition. Three beams developed with steel plates were tested until they failed in compression compared with one beam without a steel plate. The thicknesses of the steel plates used were 6 mm, 10 mm, and 15 mm. The beams were simply supported and loaded monotonically with two-point loads. Load-deflection behaviors of the beams were observed, analyzed, and evaluated in terms of spall-off concrete loading, peak loading, displacement at mid-span, flexural stiffness (service and post-peak), and energy dissipation. The outcome of the experiment shows that the use of a steel plate can improve the failure modes of the beams and also increases the peak load and flexural stiffness. The steel development beams dissipated much higher energies with an increase in plate thicknesses than the conventional beam.


2019 ◽  
Vol 22 (8) ◽  
pp. 1895-1908
Author(s):  
Fangfang Wei ◽  
Zejun Zheng ◽  
Jun Yu ◽  
Yongquan Wang

Concrete filled double-steel-plate composite walls with shear studs, one type of steel–concrete–steel walls, are recently developed and have been used in high-rise buildings, for which fire safety is a big concern. In order to investigate the fire endurance of this new type of concrete filled double-steel-plate composite walls, three specimens with different axial compression ratios and different lengths and intervals of shear studs were tested under one-side ISO-834 standard fire to obtain the temperature distribution, deformation, and detailed failure modes. Each specimen consisted of a concrete filled double-steel-plate composite wall-body and two boundary columns. Moreover, finite-element-based numerical investigations were conducted to confirm and extend experimental findings. All the concrete filled double-steel-plate composite walls failed in compression–flexure mode with the local buckling at the compressive steel plate. The results indicate that the fire endurance of concrete filled double-steel-plate composite walls is significantly affected by the axial compression ratio, the eccentricity of the axial load, and the bond strength between shear studs and concrete. Axial compression ratio, defined as the ratio of axial compression to the nominal compressive capacity of concrete filled double-steel-plate composite walls, has both positive and negative effects on the fire endurance of concrete filled double-steel-plate composite walls. The axial load eccentricity toward the unexposed side is much more detrimental to the fire endurance of concrete filled double-steel-plate composite walls than the one toward the exposed side. In engineering practice, it is recommended that proper intervals (not greater than 300 mm) and lengths (not less than 40 mm) of the shear studs should be used to ensure the bond between concrete and steel plates.


2012 ◽  
Vol 06 (01) ◽  
pp. 1250004 ◽  
Author(s):  
SWAPNIL B. KHARMALE ◽  
SIDDHARTHA GHOSH

The thin unstiffened steel plate shear wall (SPSW) system has now emerged as a promising lateral load resisting system. Considering performance-based design requirements, a ductility-based design was recently proposed for SPSW systems. It was felt that a detailed and closer look into the aspect of seismic lateral force distribution was necessary in this method. An investigation toward finding a suitable lateral force distribution for ductility-based design of SPSW is presented in this paper. The investigation is based on trial designs for a variety of scenarios where five common lateral force distributions are considered. The effectiveness of an assumed trial distribution is measured primarily on the basis of how closely the design achieves the target ductility ratio, which is measured in terms of the roof displacement. All trial distributions are found to be almost equally effective. Therefore, the use of any commonly adopted lateral force distribution is recommended for plastic design of SPSW systems.


2013 ◽  
Vol 671-674 ◽  
pp. 1408-1413
Author(s):  
Ning Zhou ◽  
Feng Xiong ◽  
Qun Yi Huang ◽  
Qi Ge ◽  
Jiang Chen

Composite steel plate shear wall (CSPSW), as a new lateral force resisting structure composed of steel plate and concrete slab, is introduced. CSPSWs can fully display the superiority of the steel plate and concrete. Ductility and energy dissipation capacity of the walls are increased and seismic behavior is improved. Recent seismic research around the word of two kinds of CSPSWs, namely, CSPSW with signal steel plate and CSPSW with double steel plates, is presented and discussed comprehensively. Some existing problems in current research of the walls are also reviewed in this paper.


Author(s):  
Farhad Behnamfar ◽  
Esmail Shakeri ◽  
Akbar Makhdoumi

Composite shear wall is a structural component consisting of a steel plate connected using shear tabs to a reinforced concrete cover. The steel plate provides for stiffness, strength, and ductility and the concrete cover prevents the steel plate from buckling. In this paper, effects of steel plate's thickness, compressive strength and thickness of the concrete cover and spacing of the shear tabs on the characteristics of the wall in nonlinear lateral behaviour are evaluated and a macromodel substitute for the wall is developed. The macromodel is a generic lateral force-displacement rule for the wall with its characteristics as developed in this paper. Practical ranges of values are accounted for the parameters involved. Such an approach makes it possible to replace the very complicated and time-consuming three-dimensional model of the composite wall with a simple one-dimensional element following the nonlinear lateral force-displacement path as given in this paper.


Sign in / Sign up

Export Citation Format

Share Document