Influence of the flexural and shear reinforcement in the concrete cone resistance of headed bars

2021 ◽  
Vol 248 ◽  
pp. 113212
Author(s):  
Mauricio Ferreira ◽  
Manoel Pereira Filho ◽  
Nataniel Lima ◽  
Marcos Oliveira
2013 ◽  
Vol 99 (7) ◽  
pp. 1679-1686
Author(s):  
Yuguang Yang ◽  
Joop Den Uijl ◽  
Joost Walraven ◽  
Stavros Petrocheilos

2018 ◽  
Vol 56 (7) ◽  
pp. 570-578
Author(s):  
A. Hata ◽  
K. Kawamura ◽  
W. Zhao ◽  
M. Chujo

2021 ◽  
Vol 11 (6) ◽  
pp. 2736
Author(s):  
Min Sook Kim ◽  
Young Hak Lee

In this study, the structural behavior of reinforced concrete flat plates shear reinforced with vertical grids made of a glass fiber reinforced polymer (GFRP) was experimentally evaluated. To examine the shear strength, experiments were performed on nine concrete slabs with different amounts and spacings of shear reinforcement. The test results indicated that the shear strength increased as the amount of shear reinforcement increased and as the spacing of the shear reinforcement decreased. The GFRP shear reinforcement changed the cracks and failure mode of the specimens from a brittle punching to flexure one. In addition, the experimental results are compared with a shear strength equation provided by different concrete design codes. This comparison demonstrates that all of the equations underestimate the shear strength of reinforced concrete flat plates shear reinforced with GFRP vertical grids. The shear strength of the equation by BS 8110 is able to calculate the punching shear strength reasonably for a concrete flat plate shear reinforced with GFRP vertical grids.


2009 ◽  
Vol 49 (4) ◽  
pp. 545-556 ◽  
Author(s):  
Junhwan Lee ◽  
Doohyun Kyung ◽  
Bumjoo Kim ◽  
Monica Prezzi

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1525 ◽  
Author(s):  
Altug Yavas ◽  
Cumali Ogun Goker

In the presented paper, the impacts of steel fiber use and tensile reinforcement ratio on shear behavior of Ultra-High Performance Concrete (UHPC) beams were investigated from the point of different tensile reinforcement ratios. In the scope of the experimental program, a total of eight beams consisting of four reinforcement ratios representing low to high ratios ranged from 0.8% to 2.2% were casted without shear reinforcement and subjected to the four-point loading test. While half of the test beams included 30 mm end-hooked steel fibers (SF-UHPC) with 2.0 vol%, the remaining beams were produced without the fiber to show possible effectiveness of the fiber use. The shear performances were discussed in terms of the load—deflection response, cracking pattern and failure mode, first cracking load and ultimate shear strength. In this sense, all the non-fiber beams were failed by shear with a dramatic load drop, regardless of the tensile reinforcement amount, before the yielding of reinforcement and they produced no deflection capability. The test results showed that while the inclusion of steel fibers to the UHPC mixture with low reinforcement ratios changed the failure mode from the shear to flexure, it significantly enhanced the ultimate shear strength in the case of higher reinforcement ratio through the SF-UHPC’ superior mechanical properties and fibers’ crack-bridging ability.


Author(s):  
Riawan Gunadi ◽  
◽  
Bambang Budiono ◽  
Iswandi Imran ◽  
Ananta Sofwan ◽  
...  

2012 ◽  
Vol 5 (5) ◽  
pp. 659-691 ◽  
Author(s):  
P. V. P. Sacramento ◽  
M. P. Ferreira ◽  
D. R. C. Oliveira ◽  
G. S. S. A. Melo

Punching strength is a critical point in the design of flat slabs and due to the lack of a theoretical method capable of explaining this phenomenon, empirical formulations presented by codes of practice are still the most used method to check the bearing capacity of slab-column connections. This paper discusses relevant aspects of the development of flat slabs, the factors that influence the punching resistance of slabs without shear reinforcement and makes comparisons between the experimental results organized in a database with 74 slabs carefully selected with theoretical results using the recommendations of ACI 318, EUROCODE 2 and NBR 6118 and also through the Critical Shear Crack Theory, presented by Muttoni (2008) and incorporated the new fib Model Code (2010).


2021 ◽  
Vol 237 ◽  
pp. 112072
Author(s):  
Paulo Sergio Mota dos Santos Junior ◽  
Andre Gonçalves Malcher da Silva ◽  
Denio Ramam Carvalho de Oliveira

Sign in / Sign up

Export Citation Format

Share Document