scholarly journals Drop-weight impact ignition of CL-20 crystals caused by trapped gases: A high-speed photographic study

2020 ◽  
Vol 1 (2) ◽  
pp. 117-122
Author(s):  
Chuanguo Chai ◽  
Jianming Zhang ◽  
Shaojun Yu ◽  
Jinjiang Xu ◽  
Qian Yu ◽  
...  

The behaviour of thin layers of solid materials under drop-weight impact is studied with the aid of high-speed photographic and pressure-measuring techniques. Photographic sequences taken with a high-speed framing camera show that explosive materials suffer large-scale deformation before initiation of explosion. The sample may undergo plastic flow in bulk, show evidence of partial fusion, and even (with PETN) melt completely. There is also evidence of Munroe jetting and instability of flow of material at the anvil/layer interfaces. The flow speed of the sample during these processes is considerable and may reach 300 m/s. When ignition of the layer occurs it does so at a small number of local hot spots, following which rapid combustion develops at speeds of 200-700 m/s. Strain-gauge measurements show that the pressures attained during drop-weight impact are typically 0.5-1 GPa (5–10 kbar) and the duration of impact 300–500 μs. In the course of impact of a thin layer of granular material a sharp pressure drop may occur, frequently from several hundred MPa down to zero. With an explosive layer, ignition occurs immediately following the instant of the pressure drop. The sudden fall in pressure is due to mechanical failure of the sample, and correlation of the two experiments shows that this is the cause of the very high flow speeds attained during impact. On the basis of these results a possible mechanism of ignition is suggested.


2002 ◽  
Vol 130 (4) ◽  
pp. 298-306 ◽  
Author(s):  
J BALZER ◽  
J FIELD ◽  
M GIFFORD ◽  
W PROUD ◽  
S WALLEY

Author(s):  
J. Allemand ◽  
M. R. Shortis ◽  
M. K. Elmouttie

Estimation of rock breakage characteristics plays an important role in optimising various industrial and mining processes used for rock comminution. Although little research has been undertaken into 3D photogrammetric measurement of the progeny kinematics, there is promising potential to improve the efficacy of rock breakage characterisation. In this study, the observation of progeny kinematics was conducted using a high speed, stereo videometric system based on laboratory experiments with a drop weight impact testing system. By manually tracking individual progeny through the captured video sequences, observed progeny coordinates can be used to determine 3D trajectories and velocities, supporting the idea that high speed video can be used for rock breakage characterisation purposes. An analysis of the results showed that the high speed videometric system successfully observed progeny trajectories and showed clear projection of the progeny away from the impact location. Velocities of the progeny could also be determined based on the trajectories and the video frame rate. These results were obtained despite the limitations of the photogrammetric system and experiment processes observed in this study. Accordingly there is sufficient evidence to conclude that high speed videometric systems are capable of observing progeny kinematics from drop weight impact tests. With further optimisation of the systems and processes used, there is potential for improving the efficacy of rock breakage characterisation from measurements with high speed videometric systems.


2014 ◽  
Vol 500 (18) ◽  
pp. 182033 ◽  
Author(s):  
D N Preston ◽  
G W Brown ◽  
B C Tappan ◽  
D M Oshwald ◽  
J R Koby ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document